Friday, March 18, 2016

Binomial Series

BINOMIAL SERIES, Vinod Singh ~ Kolkata Find the sum of the series \( \sum_{r=0}^{n} (-1)^r \binom{n}{r} \big( \frac{1}{2^r}+\frac{3^r}{2^{2r}}+\frac{7^r}{2^{3r}}+ \dots \) to m terms \( \big) \) $$$$ Given series is equal to \( \sum_{r=0}^{n} (-1)^r \binom{n}{r} \sum_{k=1}^{m} \frac{(2^k -1)^r}{2^{kr}} \) $$$$ \( = \sum_{r=0}^{n} \sum_{k=1}^{m} (-1)^r \binom{n}{r} \frac{(2^k -1)^r}{2^{kr}} \) $$$$ \( = \sum_{r=0}^{n} \sum_{k=1}^{m} (-1)^r \binom{n}{r} \lambda^r \) where $\lambda = \frac{(2^k -1)}{2^{k}}$ $$$$ \( = \sum_{k=1}^{m} \sum_{r=0}^{n} (-1)^r \binom{n}{r} \lambda^r \) Interchanging the summation $$$$ \( = \sum_{k=1}^{m} (1- \lambda)^n \), Substituting the value of $\lambda$ we have, $$$$ \( = \sum_{k=1}^{m} \frac{1}{2^{nk}} = \frac{1}{2^n} \frac{\bigg(1- \big(\frac{1}{2^n}\big)^m \bigg)}{1 - \frac{1}{2^n} } \) $$$$ \( = \frac{1}{2^n} \frac{2^n(2^{nm}-1)}{2^{nm}(2^n-1)} = \frac{2^{nm}-1}{2^{nm}(2^n-1)} \)

Friday, March 11, 2016

Integration

INTEGRATION, Vinod Singh ~ Kolkata Evaluate \(\int \frac{dx}{e^x \big(1+e^{2008x}\big)^{\frac{2007}{2008}}} \) $$$$ \(\int \frac{dx}{e^x \big(1+e^{2008x}\big)^{\frac{2007}{2008}}} = \int \frac{dx}{e^x \big(e^{2008x}(1+e^{-2008x})\big)^{\frac{2007}{2008}}}\) $$$$ \(=\int \frac{dx}{e^x e^{2007x}\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} = \int \frac{e^{-2008x}dx}{\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} \) \(= \frac{-1}{2008}\int \frac{d(1+e^{-2008x})}{\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} = \frac{\frac{-1}{2008}\big(1+e^{-2008x}\big)^{-\frac{2007}{2008}+1}}{-\frac{2007}{2008}+1} + c \)
google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0