Sunday, August 5, 2018

Equation Solving

Equation Solving, Vinod Singh ~ Kolkata Find all real number(s) $x$ such that $2^x+3^x+6^x-4^x-9^x=1 $ $$$$ This problem can be solved by transforming the equation where it can be written as sum of squares of number equals zero. From there the result will follow. See the video below for the explanation. $$$$

Thursday, August 2, 2018

Sophie Germain Identity

Here is a problem of primality testing of a number. As you can see a direct computation will not yield an effective result and will take a much longer time! So, the question arises how to solve the problem in the right way. Here comes the roll of simple and elegant identity known as Sophie Germain Identity. Watch the video below for the solution

Wednesday, August 1, 2018

Sunday, August 7, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Algebra

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let $a, b$ and $c$ be such that $a+b+c=0$ and \( P =\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\) is defined. What is the value of $P$? $$$$ $Solution: $ \( 2a^2+bc = a^2 + a^2 -(a+c)c\), since $b=-(a+c)$. $$$$ \( \implies 2a^2+bc = a^2 + a^2 -ac-c^2 = (a-c)(a+c)+a(a-c) = (a-c)(2a+c)=(a-c)(2a-a-b)=(a-c)(a-b)\) $$$$ Therefore \( \frac{a^2}{2a^2+bc} = \frac{a^2}{(a-c)(a-b)}\) $$$$ Similarly, \( \frac{b^2}{2b^2+ac} = \frac{b^2}{(b-a)(b-c)} \) and \( \frac{c^2}{2c^2+ab} = \frac{c^2}{(c-a)(c-b)} \) $$$$ Therefore \( P = \frac{a^2}{(a-c)(a-b)} +\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)} = \frac{1}{a-b} \big( \frac{a^2}{a-c} - \frac{b^2}{b-c} \big)+\frac{c^2}{(c-a)(c-b)}\) $$$$ \( \implies P = \frac{ab-ca-cb}{(c-a)(c-b)}+ \frac{c^2}{(c-a)(c-b)} = \frac{ab-ca-cb+c^2}{(c-a)(c-b)} = \frac{(c-a)(c-b)}{(c-a)(c-b)} = 1\)$$$$

Tuesday, July 26, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Calculus

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata If \( A = \int_{0}^{\pi} \frac{cos x}{(x+2)^2}dx\), then show that \( \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{(x+1)}dx = \frac{1}{2} \big( \frac{1}{2} +\frac{1}{\pi+2} - A\big)\). $$$$ Solution: \( A = \cos x \int_{0}^{\pi} \frac{dx}{(x+2)^2} - \int_{0}^{\pi} \bigg( \frac{d}{dx} \cos x \int \frac{dx}{(x+2)^2} \bigg) dx \) $$$$ \( \implies A = \frac{-\cos x}{x+2}\mid_{0}^{\pi} - \int_{0}^{\pi} \frac{\sin x}{(x+2)} dx \) $$$$ \( \implies A = \frac{1}{\pi +2} + \frac{1}{2} - \int_{0}^{\pi} \frac{2 \sin \frac{x}{2} \cos \frac{x}{2} }{2(1+\frac{x}{2})} dx \) $$$$ Putting $\frac{x}{2}=t$ in the last integral, we have $dx=2dt$ and $t$ varies from $0$ to $\frac{\pi}{2}$ $$$$ Therefore, \( A = \frac{1}{\pi +2} + \frac{1}{2} - 2 \int_{0}^{\frac{\pi}{2}} \frac{\sin t \cos t}{(1+t)}dt \)$$$$ \( \implies \int_{0}^{\frac{\pi}{2}} \frac{\sin t \cos t}{(1+t)}dt = \frac{1}{2} \bigg( \frac{1}{\pi +2} + \frac{1}{2} -A \bigg) \) $$$$ \( i.e., \) \( \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{(1+x)}dx = \frac{1}{2} \bigg( \frac{1}{\pi +2} + \frac{1}{2} -A \bigg) \) $$$$

Monday, July 18, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Calculus

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Evaluate \( lim_{n \rightarrow \infty} \bigg(\prod_{r=1}^{r=n} (1+\frac{2r-1}{2n}) \bigg)^{\frac{1}{2n}} \) $$$$ Let \( A = \bigg(\prod_{r=1}^{r=n} (1+\frac{2r-1}{2n}) \bigg)^{\frac{1}{2n}} \) $$$$ \( \implies A = \frac{\bigg(\prod_{r=1}^{r=2n} (1+\frac{r}{2n}) \bigg)^{\frac{1}{2n}}}{\bigg(\prod_{r=1}^{r=n} (1+\frac{2r}{2n}) \bigg)^{\frac{1}{2n}}} \) $$$$ \( \implies ln A = \frac{1}{2n} \sum_{r=1}^{r=2n} ln ( 1+\frac{r}{2n})- \frac{1}{2n} \sum_{r=1}^{r=n} ln ( 1+\frac{r}{n})\) $$$$ \( \implies lim_{n \rightarrow \infty} ln A = \frac{1}{2} lim_{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{r=2n} ln ( 1+\frac{r}{2n}) - \frac{1}{2} lim_{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{r=n} ln ( 1+\frac{r}{n}) \) $$$$ \( \implies lim_{n \rightarrow \infty} ln A = \frac{1}{2} \int_{0}^{2} ln (1+ \frac{x}{2}) dx - \frac{1}{2} \int_{0}^{1} ln (1+ x ) dx \) $$$$ \( \implies lim_{n \rightarrow \infty} ln A = ln 4 - 1 - ( ln 2 - \frac{1}{2}) = ln 2 - \frac{1}{2}\)$$$$ \( \implies lim_{n \rightarrow \infty} A = e^{ln 2 - \frac{1}{2}} = \frac{2}{\sqrt{e}} \) $$$$ \( \implies lim_{n \rightarrow \infty} \bigg(\prod_{r=1}^{r=n} (1+\frac{2r-1}{2n}) \bigg)^{\frac{1}{2n}} = \frac{2}{\sqrt{e}} \) $$$$

Friday, May 6, 2016

Thursday, April 14, 2016

Friday, March 18, 2016

Binomial Series

BINOMIAL SERIES, Vinod Singh ~ Kolkata Find the sum of the series \( \sum_{r=0}^{n} (-1)^r \binom{n}{r} \big( \frac{1}{2^r}+\frac{3^r}{2^{2r}}+\frac{7^r}{2^{3r}}+ \dots \) to m terms \( \big) \) $$$$ Given series is equal to \( \sum_{r=0}^{n} (-1)^r \binom{n}{r} \sum_{k=1}^{m} \frac{(2^k -1)^r}{2^{kr}} \) $$$$ \( = \sum_{r=0}^{n} \sum_{k=1}^{m} (-1)^r \binom{n}{r} \frac{(2^k -1)^r}{2^{kr}} \) $$$$ \( = \sum_{r=0}^{n} \sum_{k=1}^{m} (-1)^r \binom{n}{r} \lambda^r \) where $\lambda = \frac{(2^k -1)}{2^{k}}$ $$$$ \( = \sum_{k=1}^{m} \sum_{r=0}^{n} (-1)^r \binom{n}{r} \lambda^r \) Interchanging the summation $$$$ \( = \sum_{k=1}^{m} (1- \lambda)^n \), Substituting the value of $\lambda$ we have, $$$$ \( = \sum_{k=1}^{m} \frac{1}{2^{nk}} = \frac{1}{2^n} \frac{\bigg(1- \big(\frac{1}{2^n}\big)^m \bigg)}{1 - \frac{1}{2^n} } \) $$$$ \( = \frac{1}{2^n} \frac{2^n(2^{nm}-1)}{2^{nm}(2^n-1)} = \frac{2^{nm}-1}{2^{nm}(2^n-1)} \)

Friday, March 11, 2016

Integration

INTEGRATION, Vinod Singh ~ Kolkata Evaluate \(\int \frac{dx}{e^x \big(1+e^{2008x}\big)^{\frac{2007}{2008}}} \) $$$$ \(\int \frac{dx}{e^x \big(1+e^{2008x}\big)^{\frac{2007}{2008}}} = \int \frac{dx}{e^x \big(e^{2008x}(1+e^{-2008x})\big)^{\frac{2007}{2008}}}\) $$$$ \(=\int \frac{dx}{e^x e^{2007x}\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} = \int \frac{e^{-2008x}dx}{\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} \) \(= \frac{-1}{2008}\int \frac{d(1+e^{-2008x})}{\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} = \frac{\frac{-1}{2008}\big(1+e^{-2008x}\big)^{-\frac{2007}{2008}+1}}{-\frac{2007}{2008}+1} + c \)

Monday, August 17, 2015

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Algebra

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let $a, b, c$ be real numbers greater than $1.$ Let $S$ denote the sum $S = log_{a}{bc} + log_{b}{ca} + log_{c}{ab}.$ $$$$ Find the smallest possible value of $S.$ $$$$ \( S =log_{a}{\frac{abc}{a}} + log_{b}{\frac{bca}{b}} + log_{c}{\frac{abc}{c}} = log_{a}{abc} + log_{b}{abc} + log_{c}{abc}-3 \) $$$$ \( = log_{a}{e} \times log_{e}{abc} + log_{b}{e} \times log_{e}{abc} + log_{c}{e} \times log_{e}{abc}-3 \) $$$$ \( = log_{e}{abc} \bigg( \frac{1}{log_{e}{a}} +\frac{1}{log_{e}{b}}+\frac{1}{log_{e}{c}} \bigg) -3 \) $$$$ \( = (log_{e}{a}+log_{e}{b}+log_{e}{c}) \bigg( \frac{1}{log_{e}{a}} +\frac{1}{log_{e}{b}}+\frac{1}{log_{e}{c}} \bigg) -3 \) $$$$ Now Using the inequality $A.M \times H.M \geq n^2 $ for $n$ positive real numbers, we see that $$$$ \( (log_{e}{a}+log_{e}{b}+log_{e}{c}) \bigg( \frac{1}{log_{e}{a}} +\frac{1}{log_{e}{b}}+\frac{1}{log_{e}{c}} \bigg) \geq 3^2 = 9 \) $$$$ Thus \( S \geq 9-3 = 6 \). Note \( log_{e}{a},log_{e}{b},log_{e}{c} \) are all positive since $a,b,c > 1$.

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Algebra

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Show that the polynomial $x^8 − x^7 + x^2 − x + 15$ has no real root. $$$$ Let $f(x)=x^8 − x^7 + x^2 − x + 15$, we will show that $f(x) >0$ for all $ x \in \mathbb{R}$. $$$$ \( f(x) = x^7(x-1)+x(x-1)+15 = (x-1)x(x^6+1)+15 \) $$$$ Now, \(\mathbb{R} = (- \infty , 0] \cup (0,1] \cup (1, \infty) \). Note that \( f(0)=f(1)=15\) $$$$ When $ x \in (1, \infty), $ \( x,x-1 \quad and \quad x^6+1 > 0 \implies f(x) > 15 \quad \forall \quad x \in (1, \infty)\) $$$$ When $ x \in (- \infty , 0), $ \( x \quad and \quad x-1 < 0 \quad thus \quad x(x-1) > 0\) since $x^6+1 > 0$ for any $x$, $f(x) > 15$ in this case too. $$$$ When $ x \in (0,1) $, $1 < x^6+1 < 2$ and $ 0 < x < 1 $. Since both of them are positive $ 0 < x(x^6+1) < 2$. Further $ -1 < x-1 < 0 $, thus $x(x-1)(x^6+1) < 0$. Again $|x-1| < 1$ this implies $ -2 < x(x-1)(x^6+1) < 0 $. Thus \(f(x) > 13 > 0\). $$$$ Combining all the cases we see that \( f(x) > 0 \quad \forall \quad x \in \mathbb{R} \) which shows $f(x)$ has no real root.

Sunday, August 16, 2015

Indian Statistical Institute (ISI) B.Math & B.Stat : Combinatorics

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata For $ k \geq 1$, find the value of \[ \binom{n}{0}+ \binom{n+1}{1}+ \binom{n+2}{2}+ \dots + \binom{n+k}{k}\] Using the identity \( \binom{n}{r} = \binom{n}{n-r} \), \( \binom{n}{0}+ \binom{n+1}{1}+ \binom{n+2}{2}+ \dots + \binom{n+k}{k}\) reduces to \[ \binom{n}{n}+ \binom{n+1}{n}+ \binom{n+2}{n}+ \dots + \binom{n+k}{n}\] = Coefficient of $x^n$ in $(1+x)^n$ + Coefficient of $x^n$ in $(1+x)^{n+1}$ + $\dots$ + Coefficient of $x^n$ in $(1+x)^{n+k}$ $$$$ = Coefficient of $x^n$ in \( (1+x)^n + (1+x)^{n+1} + \dots + (1+x)^{n+k} \) $$$$ = Coefficient of $x^n$ in \( (1+x)^n \frac{(1+x)^{k+1}-1}{1+x-1} = \frac{(1+x)^{n+k+1}-(1+x)^n}{x}\) $$$$ = Coefficient of $x^{n+1}$ in $(1+x)^{n+k+1}$ $= \binom{n+k+1}{n+1}$ $$$$
google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0