Processing math: 65%

Monday, August 17, 2015

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Algebra

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let a,b,c be real numbers greater than 1. Let S denote the sum S=logabc+logbca+logcab. Find the smallest possible value of S. S=logaabca+logbbcab+logcabcc=logaabc+logbabc+logcabc3 =logae×logeabc+logbe×logeabc+logce×logeabc3 =logeabc(1logea+1logeb+1logec)3 =(logea+logeb+logec)(1logea+1logeb+1logec)3 Now Using the inequality A.M×H.Mn2 for n positive real numbers, we see that (logea+logeb+logec)(1logea+1logeb+1logec)32=9 Thus S93=6. Note logea,logeb,logec are all positive since a,b,c>1.

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Algebra

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Show that the polynomial x8x7+x2x+15 has no real root. Let f(x)=x8x7+x2x+15, we will show that f(x)>0 for all xR. f(x)=x7(x1)+x(x1)+15=(x1)x(x6+1)+15 Now, R=(,0](0,1](1,). Note that f(0)=f(1)=15 When x(1,), x,x1andx6+1>0f(x)>15x(1,) When x(,0), xandx1<0thusx(x1)>0 since x6+1>0 for any x, f(x)>15 in this case too. When x(0,1), 1<x6+1<2 and 0<x<1. Since both of them are positive 0<x(x6+1)<2. Further 1<x1<0, thus x(x1)(x6+1)<0. Again |x1|<1 this implies 2<x(x1)(x6+1)<0. Thus f(x)>13>0. Combining all the cases we see that f(x)>0xR which shows f(x) has no real root.

Sunday, August 16, 2015

Indian Statistical Institute (ISI) B.Math & B.Stat : Combinatorics

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata For k1, find the value of \binom{n}{0}+ \binom{n+1}{1}+ \binom{n+2}{2}+ \dots + \binom{n+k}{k} Using the identity \binom{n}{r} = \binom{n}{n-r} , \binom{n}{0}+ \binom{n+1}{1}+ \binom{n+2}{2}+ \dots + \binom{n+k}{k} reduces to \binom{n}{n}+ \binom{n+1}{n}+ \binom{n+2}{n}+ \dots + \binom{n+k}{n} = Coefficient of x^n in (1+x)^n + Coefficient of x^n in (1+x)^{n+1} + \dots + Coefficient of x^n in (1+x)^{n+k} = Coefficient of x^n in (1+x)^n + (1+x)^{n+1} + \dots + (1+x)^{n+k} = Coefficient of x^n in (1+x)^n \frac{(1+x)^{k+1}-1}{1+x-1} = \frac{(1+x)^{n+k+1}-(1+x)^n}{x} = Coefficient of x^{n+1} in (1+x)^{n+k+1} = \binom{n+k+1}{n+1}