Processing math: 100%

Saturday, May 30, 2015

Indian Statistical Institute B.Math & B.Stat : Number Theory

Indian Statistical Institute : Number Theory Find the digit at the unit place of (1!2!+3!+25!)(1!2!+3!+25!)
First note that k!0(mod 10) for all k5,kN
So, 5!6!+7!+25!0(mod 10) and 1!2!+3!4!=191(mod 10) (Using the property of congruences).
Using the above two congruences (1!2!+3!+25!)1(mod 10)
So, (1!2!+3!+25!)(1!2!+3!+25!)1(1!2!+3!+25!)1(mod10)
giving 1 as the last digit.
Let aa(mod m) and bb(mod m), then important properties of congruences include the following, where means "implies":
1. Reflexivity: aa(modm).
2. Symmetry: ab(mod m)ba(mod m).
3. Transitivity: ab(mod m) and bc(mod m)ac(mod m).
4. a+ba+b(mod m)
5. abab(mod m).
6. abab(mod m).
7. ab(mod m)kakb(mod m).
8. ab(mod m)anbn(mod m).
9. akbk(mod m) ab(mod m(k,m)), where (k,m) is the greatest common divisor.
11. If ab(mod m), then P(a)P(b)(mod m), for P(x) a polynomial with integer coefficients.

No comments:

Post a Comment