Indian Statistical Institute : Number Theory
Find the digit at the unit place of \[\big(1!-2!+3!-\dots \dots +25!\big )^{\big(1!-2!+3!-\dots \dots +25!\big )}\]
First note that \( k! \equiv 0 (mod\ 10) \) for all $k \geq 5 , k \in \mathbb{N}$ $$$$
So, \( 5!-6!+7!-\dots \dots +25! \equiv 0 (mod\ 10) \) and \( 1!-2!+3!-4! = -19 \equiv 1 (mod\ 10)\) (Using the property of $congruences$). $$$$
Using the above two congruences \( \big(1!-2!+3!-\dots \dots +25!\big ) \equiv 1 (mod\ 10) \) $$$$
So, \[\big(1!-2!+3!-\dots \dots +25!\big )^{\big(1!-2!+3!-\dots \dots +25!\big )} \equiv 1^{\big(1!-2!+3!-\dots \dots +25!\big )} \equiv 1 (mod 10) \]
giving $1$ as the last digit. $$$$
Let \(a \equiv a' (mod\ m) \) and \(b \equiv b' (mod\ m)\), then important properties of $congruences$ include the following, where $\implies$ means "implies": $$$$
1. Reflexivity: $a\equiv a (mod- m)$. $$$$
2. Symmetry: \(a\equiv b (mod\ m) \implies b\equiv a (mod\ m)\).$$$$
3. Transitivity: \(a\equiv b (mod\ m)\) and \(b \equiv c (mod\ m)\implies a\equiv c (mod\ m)\). $$$$
4. \(a+b \equiv a'+b' (mod\ m)\)$$$$
5. \(a-b\equiv a'-b' (mod\ m)\). $$$$
6. \(ab\equiv a'b' (mod\ m)\). $$$$
7. \(a\equiv b (mod\ m)\implies ka \equiv kb (mod\ m)\). $$$$
8. \(a\equiv b (mod\ m)\implies a^n\equiv b^n (mod\ m)\). $$$$
9. \(ak\equiv bk (mod\ m)\implies\) \(a\equiv b \big(mod\ \frac{m}{(k,m)}\big),\) where $(k,m)$ is the greatest common divisor. $$$$
11. If $a \equiv b (mod\ m)$, then $P(a) \equiv P(b) (mod\ m)$, for $P(x)$ a polynomial with integer coefficients.
No comments:
Post a Comment