First note that k!≡0(mod 10) for all k≥5,k∈N
So, 5!−6!+7!−…⋯+25!≡0(mod 10) and 1!−2!+3!−4!=−19≡1(mod 10) (Using the property of congruences).
Using the above two congruences (1!−2!+3!−…⋯+25!)≡1(mod 10)
So, (1!−2!+3!−…⋯+25!)(1!−2!+3!−…⋯+25!)≡1(1!−2!+3!−…⋯+25!)≡1(mod10)
giving 1 as the last digit.
Let a≡a′(mod m) and b≡b′(mod m), then important properties of congruences include the following, where ⟹ means "implies":
1. Reflexivity: a≡a(mod−m).
2. Symmetry: a≡b(mod m)⟹b≡a(mod m).
3. Transitivity: a≡b(mod m) and b≡c(mod m)⟹a≡c(mod m).
4. a+b≡a′+b′(mod m)
5. a−b≡a′−b′(mod m).
6. ab≡a′b′(mod m).
7. a≡b(mod m)⟹ka≡kb(mod m).
8. a≡b(mod m)⟹an≡bn(mod m).
9. ak≡bk(mod m)⟹ a≡b(mod m(k,m)), where (k,m) is the greatest common divisor.
11. If a≡b(mod m), then P(a)≡P(b)(mod m), for P(x) a polynomial with integer coefficients.
No comments:
Post a Comment