Processing math: 100%

Friday, May 29, 2015

Indian Statistical Institute B.Math & B.Stat : Integration

Indian Statistical Institute B.Math & B.Stat Let α and β be two positive real numbers. For any integer n>0, define an=nβαu(uα+2+uα)du. Then find limnan. Multiplying uα1 to the numerator and denominator of the integrand, we have an=nβαuα1u×uα1(uα+2+uα)du Substituting uα=t we get the transformed integral as an=nαβαdt(t+1)2dt=nαβα(1+βα)(1+nα) Therefore,limnan=limnnαβα(1+βα)(1+nα)=limn1(βn)α(1+βα)(1+1n)=11+βα

No comments:

Post a Comment