Loading [MathJax]/jax/output/HTML-CSS/jax.js

Tuesday, July 26, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Calculus

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata If A=π0cosx(x+2)2dx, then show that π20sinxcosx(x+1)dx=12(12+1π+2A). Solution: A=cosxπ0dx(x+2)2π0(ddxcosxdx(x+2)2)dx A=cosxx+2π0π0sinx(x+2)dx A=1π+2+12π02sinx2cosx22(1+x2)dx Putting x2=t in the last integral, we have dx=2dt and t varies from 0 to π2 Therefore, A=1π+2+122π20sintcost(1+t)dt π20sintcost(1+t)dt=12(1π+2+12A) i.e., π20sinxcosx(1+x)dx=12(1π+2+12A)

Monday, July 18, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Calculus

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Evaluate limn(r=nr=1(1+2r12n))12n Let A=(r=nr=1(1+2r12n))12n A=(r=2nr=1(1+r2n))12n(r=nr=1(1+2r2n))12n lnA=12nr=2nr=1ln(1+r2n)12nr=nr=1ln(1+rn) limnlnA=12limn1nr=2nr=1ln(1+r2n)12limn1nr=nr=1ln(1+rn) limnlnA=1220ln(1+x2)dx1210ln(1+x)dx limnlnA=ln41(ln212)=ln212 limnA=eln212=2e limn(r=nr=1(1+2r12n))12n=2e