Wednesday, May 7, 2014

Olympiad Problems













Find the common roots of the equation x2000+x2002+1 = 0 and x3+2x2+2x+1 = 0.
#IIT #CMI #ISI

x3+2x2+2x+1 = 0
=> x3+1+2x(x+1) = 0
=> (x+1)(x2-x+1)+2x(x+1) = 0
=> (x+1)(x2-x+1+2x) = 0
=> (x+1)(x2+x+1) =0
=> x = -1,w,w2 where 'w' is the cube root of unity
Now putting these values in the expression x2000+x2002+1 we see that w and w2 only reduce it to zero. So the common roots are w,w2


Find real x for which 1/[x] + 1/[2x] = {x} + 1/3, where [x] = greatest integer less than equal to x and {x} = x – {x}.

Let x = z + f, where z is the integer part and 0 <= f < 1
Now we have two cases (a) 0 <= f < 1/2 (b) 1/2 <= f < 1
Also note that the R.H.S of the given equation i.e., {x} + 1/3 > 0 so x has to be positive.

Case (a) 0 <= f < 1/2, [x] = z and 2x = 2z + 2f , [2x] = 2z since 0 <= 2f < 1
and {x} = x – [x] = z + f – z = f.
This reduces the equation to
1/z + 1/2z = f + 1/3 ........... (1)
=> 1/z + 1/2z >= 1/3 (Since f >= 0 )
=> 3/2z >= 1/3
=> 9 >= 2z
=> 2z – 9 <= 0
=> z = 1,2,3,4
for z = 1, {x} = f = 1 which is invalid in this case
for z = 2, using equation (1) {x} = f = 5/12 < 1/2
for z = 3, using equation (1) {x} = f = 1/6 < 1/2
for z = 4, using equation (1) {x} = f = 1/24 < 1/2
so possible values of x in this case is 2+5/12, 3+1/6 and 4+1/24
i.e., x = 29/12, 19/6 and 97/24
Case(b) Following the steps of case (a) show that in this case no solution exists.
Show that abc(a³-b³)(b³-c³)(c³-a³) is always divisible by 7 where a, b and c are non-negative integers.

Result: Cube of any integer leaves remainder 0, 1 or 6 on dividing by 7.
if any one of a,b or c is divisible by 7, then abc(a³-b³)(b³-c³)(c³-a³) is divisible by 7. So we assume that none of the numbers a,b or c is divisible by 7.
Now using the result stated above a³, b³,c³ leaves remainder 1 or 6 (due to the assumption) otherwise if 7 | or 7 | or 7 | => 7 | a or 7 | b or 7 | c ( since 7 is prime) A contradiction to the assumption.
Now by Pigeon Hole Principle two of the numbers a³, b³,c³ have the same remainder. Hence their difference is divisible by 7, thus
7 | abc(a³-b³)(b³-c³)(c³-a³) in any case.

Find the remainder when 2 is divided by 1990

Result: If p is prime & p do not divide a then ap is congruent a (modulo p) (Fermat's Theorem)
Note that 1990 = 199 X 10 and 199 is a prime.
Using Fermats theorem we have 2199 is congruent 2 (modulo 199)
=> (2199 )10 is congruent 210 (modulo 199)
=> 2 is congruent 1024 (modulo 199)
i.e 199 | 2 - 1024
Now 2 and 1024 has the same last digit, which is 4 ( try to find it for 2 ). Therefore
10 | 2 - 1024
Now g.c.d (199, 10) = 1 therefore 1990 | 2 - 1024
So the remainder is 1024

No comments:

Post a Comment

google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0