Processing math: 0%

Friday, March 18, 2016

Binomial Series

BINOMIAL SERIES, Vinod Singh ~ Kolkata Find the sum of the series \sum_{r=0}^{n} (-1)^r \binom{n}{r} \big( \frac{1}{2^r}+\frac{3^r}{2^{2r}}+\frac{7^r}{2^{3r}}+ \dots to m terms \big) Given series is equal to \sum_{r=0}^{n} (-1)^r \binom{n}{r} \sum_{k=1}^{m} \frac{(2^k -1)^r}{2^{kr}} = \sum_{r=0}^{n} \sum_{k=1}^{m} (-1)^r \binom{n}{r} \frac{(2^k -1)^r}{2^{kr}} = \sum_{r=0}^{n} \sum_{k=1}^{m} (-1)^r \binom{n}{r} \lambda^r where \lambda = \frac{(2^k -1)}{2^{k}} = \sum_{k=1}^{m} \sum_{r=0}^{n} (-1)^r \binom{n}{r} \lambda^r Interchanging the summation = \sum_{k=1}^{m} (1- \lambda)^n , Substituting the value of \lambda we have, = \sum_{k=1}^{m} \frac{1}{2^{nk}} = \frac{1}{2^n} \frac{\bigg(1- \big(\frac{1}{2^n}\big)^m \bigg)}{1 - \frac{1}{2^n} } = \frac{1}{2^n} \frac{2^n(2^{nm}-1)}{2^{nm}(2^n-1)} = \frac{2^{nm}-1}{2^{nm}(2^n-1)}

Friday, March 11, 2016

Integration

INTEGRATION, Vinod Singh ~ Kolkata Evaluate \int \frac{dx}{e^x \big(1+e^{2008x}\big)^{\frac{2007}{2008}}} \int \frac{dx}{e^x \big(1+e^{2008x}\big)^{\frac{2007}{2008}}} = \int \frac{dx}{e^x \big(e^{2008x}(1+e^{-2008x})\big)^{\frac{2007}{2008}}} =\int \frac{dx}{e^x e^{2007x}\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} = \int \frac{e^{-2008x}dx}{\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} = \frac{-1}{2008}\int \frac{d(1+e^{-2008x})}{\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} = \frac{\frac{-1}{2008}\big(1+e^{-2008x}\big)^{-\frac{2007}{2008}+1}}{-\frac{2007}{2008}+1} + c