Sunday, February 22, 2026

Relations and Functions Advanced Problems for JEE Main and WBJEE

25 Multiple Choice Questions (MCQs) on Relations and Functions for students of class XI and XII preparing for board examinations or JEE Mains, IIT Advanced WBJEE or any other competitive entrance examination.
👨‍🏫 Author: Singh
📞 WA: +91-9038126497

Advanced Algebra - Relations and Functions

Test your understanding of core concepts.

0
Done
25
Left
0%
Score

📝 Instructions

  • This quiz contains 25 multiple choice questions.
  • Select only one correct answer per question.
  • Use the navigator to jump between questions.
  • Submit when you are finished to see results.
Question Navigator
Progress 0%
Question 1
The number of reflexive relations on a set \(A\) of \(n\) elements is equal to
Question 2
Let \(X\) be a non-void set. If \(\rho_1\) and \(\rho_2\) be the transitive relations on \(X\), then [ \( \circ\) denotes composition ]
Question 3
If one root of \(x^2 + px - q^2 = 0\), \(p\) and \(q\) are real, be less than \(2\) and other be greater than \(2\), then
Question 4
If \(R\) and \(Q\) are equivalence relations on set \(A\), then which of the following is not an equivalence relation
Question 5
Let \( \rho \) be a relation defined on set of natural numbers \( \mathbb{N} \), as \( \rho = \{(x, y) \in \mathbb{N} \times \mathbb{N} : 2x + y = 41\} \). Then domain A and range B are
Question 6
In \(\mathbb{R}\), a relation \(\rho\) is defined as follows: \(\forall a,b \in \mathbb{R}\), \(a\rho b \quad \text{holds iff} \quad a^2 -4ab+3b^2=0 \)
Question 7
Let \( f : \mathbb{R} \to \mathbb{R} \) be a function defined by \( f(x) = \frac{e^{|x|} - e^{-x}}{e^x + e^{-x}} \), then
Question 8
Let \( f : \mathbb{R} \to \mathbb{R} \) be a function defined by \( f(x) = 2026x^3+2025x^2+2024x+2023 \), then
Question 9
Let \(u + v + w = 3\), \(u, v, w \in \mathbb{R}\) and \(f(x) = ux^2 + vx + w\) be such that \(f(x + y) = f(x) + f(y) + xy\), \(\forall x, y \in \mathbb{R}\). Then \(v\) is equal to
Question 10
Let \(X\) and \(Y\) be two non-empty sets. Let \(f:X \rightarrow Y\) be a function. For \(A \subset X\) and \(B \subset Y\) , define \(f(A)=\{f(x):x \in A\}\) and \(f^{-1}(B)=\{x \in X : f(x) \in B \}\), then
Question 11
Range of the function \(f(x)= \frac{x^2+x+2}{x^2+x+1}\ \: x \in \mathbb{R}\)
Question 12
Let \(X=\{v,i,n,o,d\}\) and \(Y=\{p,m\}\). The number of onto ( surjective) functions from \(X\) to \(Y\) is
Question 13
Find the natural number \(a\) for which \(\sum_{k=1}^{n} f(a+k) = 16(2^n-1)\) where the function \(f\) satisfies the relation \(f(x+y)=f(x)f(y)\) for all natural numbers \(x,y\) and further , \(f(1)=2\).
Question 14
The domain of the definition of the function \(f(x)=\frac{1}{4-x^2} + log_{10} (x^3-x)\) is
Question 15
Let \(f(x)= a^x \quad (a > 0) \) be written as \(f(x)=f_1(x)+f_2(x)\), where \(f_1(x)\) is an even function and \(f_2(x)\) is an odd function. Then \(f_1(x+y)+f_1(x-y)\) equals
Question 16
Let \(g(x) = 1 + x - [x]\) and \(f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}\), then for all \(x\), \(f[g(x)]\) is equal to
Question 17
Let \(\mathbb{N}\) be the set of natural numbers and two functions \(f\) and \(g\) defined as \(f,g:\mathbb{N} \rightarrow \mathbb{N}\) such that \(f(x) = \begin{cases} \frac{n+1}{2}, & \text{ if n is odd} \\ \frac{n}{2}, & \text{ if n is even} \end{cases}\) and \(g(n)=n-(-1)^n\). Then \(f\circ g\) is
Question 18
If \(f\) is an even function defined on the interval \((-5, 5)\), the four real values of \(x\) satisfying the equation: \(f(x) = f\left(\frac{x+1}{x+2}\right)\) are
Question 19
Let \(f:X \rightarrow X\) be such that \(f(f(x))=x\), for all \(x \in X\) and \( X \subset R \), then
Question 20
Let \( f : R \rightarrow R \) be such that \( f \) is injective and \( f(x)f(y) = f(x+y) \) for \( \forall x, y \in R \). If \( f(x) \), \( f(y) \), \( f(z) \) are in G.P., then \( x, y, z \) are in
Question 21
The domain of definition of \( f(x) = \sqrt{\frac{1 - |x|}{2 - |x|}} \) is
Question 22
Let \( f(x) = ax^2 + bx + c \), \( g(x) = px^2 + qx + r \) such that \( f(1) = g(1) \), \( f(2) = g(2) \) and \( f(3) - g(3) = 2 \). Then \( f(4) - g(4) \) is
Question 23
Let \( R \) be the set of real numbers and the functions \( f : R \rightarrow R \) and \( g : R \rightarrow R \) be defined by \( f(x) = x^2 + 2x - 3 \) and \( g(x) = x + 1 \). Then, the value of \( x \) for which \( f(g(x)) = g(f(x)) \) is
Question 24
The minimum value of the function \(f(x)=2|x-1|+|x-2|\) is
Question 25
Let \(\mathrm{A}=\{-3,-2,-1,0,1,2,3\}\) and \(R\) be a relation on \(A\) defined by \(x R y\) if and only if \(2 x-y \in\{0,1\}\). Let \(l\) be the number of elements in \(R\). Let \(m\) and \(n\) be the minimum number of elements required to be added to \(R\) to make it a reflexive and symmetric relation, respectively. Then \(l+\mathrm{m}+ \mathrm{n}\) is equal to :-

No comments:

Post a Comment