Solution: 2a2+bc=a2+a2−(a+c)c, since b=−(a+c).
⟹2a2+bc=a2+a2−ac−c2=(a−c)(a+c)+a(a−c)=(a−c)(2a+c)=(a−c)(2a−a−b)=(a−c)(a−b)
Therefore a22a2+bc=a2(a−c)(a−b)
Similarly, b22b2+ac=b2(b−a)(b−c) and c22c2+ab=c2(c−a)(c−b)
Therefore P=a2(a−c)(a−b)+b2(b−a)(b−c)+c2(c−a)(c−b)=1a−b(a2a−c−b2b−c)+c2(c−a)(c−b)
⟹P=ab−ca−cb(c−a)(c−b)+c2(c−a)(c−b)=ab−ca−cb+c2(c−a)(c−b)=(c−a)(c−b)(c−a)(c−b)=1