Sunday, August 7, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Algebra

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let a,b and c be such that a+b+c=0 and P=a22a2+bc+b22b2+ca+c22c2+ab is defined. What is the value of P?
Solution: 2a2+bc=a2+a2(a+c)c, since b=(a+c).
2a2+bc=a2+a2acc2=(ac)(a+c)+a(ac)=(ac)(2a+c)=(ac)(2aab)=(ac)(ab)
Therefore a22a2+bc=a2(ac)(ab)
Similarly, b22b2+ac=b2(ba)(bc) and c22c2+ab=c2(ca)(cb)
Therefore P=a2(ac)(ab)+b2(ba)(bc)+c2(ca)(cb)=1ab(a2acb2bc)+c2(ca)(cb)
P=abcacb(ca)(cb)+c2(ca)(cb)=abcacb+c2(ca)(cb)=(ca)(cb)(ca)(cb)=1

Tuesday, July 26, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Calculus

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata If A=π0cosx(x+2)2dx, then show that π20sinxcosx(x+1)dx=12(12+1π+2A).
Solution: A=cosxπ0dx(x+2)2π0(ddxcosxdx(x+2)2)dx
A=cosxx+2π0π0sinx(x+2)dx
A=1π+2+12π02sinx2cosx22(1+x2)dx
Putting x2=t in the last integral, we have dx=2dt and t varies from 0 to π2
Therefore, A=1π+2+122π20sintcost(1+t)dt
π20sintcost(1+t)dt=12(1π+2+12A)
i.e., π20sinxcosx(1+x)dx=12(1π+2+12A)

Monday, July 18, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Calculus

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Evaluate limn(r=nr=1(1+2r12n))12n
Let A=(r=nr=1(1+2r12n))12n
A=(r=2nr=1(1+r2n))12n(r=nr=1(1+2r2n))12n
lnA=12nr=2nr=1ln(1+r2n)12nr=nr=1ln(1+rn)
limnlnA=12limn1nr=2nr=1ln(1+r2n)12limn1nr=nr=1ln(1+rn)
limnlnA=1220ln(1+x2)dx1210ln(1+x)dx
limnlnA=ln41(ln212)=ln212
limnA=eln212=2e
limn(r=nr=1(1+2r12n))12n=2e

Friday, May 6, 2016

Thursday, April 14, 2016

Friday, March 18, 2016

Binomial Series

BINOMIAL SERIES, Vinod Singh ~ Kolkata Find the sum of the series nr=0(1)r(nr)(12r+3r22r+7r23r+ to m terms )
Given series is equal to nr=0(1)r(nr)mk=1(2k1)r2kr
=nr=0mk=1(1)r(nr)(2k1)r2kr
=nr=0mk=1(1)r(nr)λr where λ=(2k1)2k
=mk=1nr=0(1)r(nr)λr Interchanging the summation
=mk=1(1λ)n, Substituting the value of λ we have,
=mk=112nk=12n(1(12n)m)112n
=12n2n(2nm1)2nm(2n1)=2nm12nm(2n1)

Friday, March 11, 2016

Integration

INTEGRATION, Vinod Singh ~ Kolkata Evaluate dxex(1+e2008x)20072008
dxex(1+e2008x)20072008=dxex(e2008x(1+e2008x))20072008
=dxexe2007x(1+e2008x)20072008=e2008xdx(1+e2008x)20072008 =12008d(1+e2008x)(1+e2008x)20072008=12008(1+e2008x)20072008+120072008+1+c