Tuesday, May 18, 2021

Inverse Laplace Transformation

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata

 In mathematics, the Laplace transform, named after its inventor Pierre-Simon Laplace is an integral transform that converts a function of a real variable  (often time) to a function of a complex variable  (complex frequency). The transform has many applications in science and engineering because it is a tool for solving differential equations. In particular, it transforms differential equations into algebraic equations and convolution into multiplication.

The Laplace transform of a function f(t), defined for all real numbers t ≥ 0, is the function F(s), which is a unilateral transform defined by

 

 

 

 

(Eq.1)

where s is a complex number frequency parameter

, with real numbers σ and ω.

An alternate notation for the Laplace transform is  instead of F.

Get solution of the following problems.


Evaluate L{sin2at}
Evaluate L{e2t(3cos6t5sin6t)}
Evaluate L{e2t(3cos6t5sin6t)}
Evaluate L1{αs2}
Evaluate L1{1(s1)(s2)}
Evaluate L1{3s2s624s+20}
Evaluate L1{1+s8s9)}
Evaluate L1{ss2+2+6ss216+3s3}
Evaluate L1{1(s+2)2(s2)}
Evaluate L1{1s26s+10}
Evaluate L1{3s+7s22s3}
Evaluate L1{1(s+a)3}
Evaluate L1{s(s2a2)2}
Evaluate L1{s(s2+a2)2}
Evaluate L1{s2(s2+22)2}
Evaluate L1{1s2+6s+13}
Evaluate L1{1(s2+1)(s2+4s+5)}
Evaluate L1{3s2+10s+3(s2+1)(s3+4s62+5s+2)}
Evaluate L1{2s+7(s+3)4}
Evaluate L1{s+3(s2+4)2}
Download the file below:

Sunday, May 16, 2021

Geometry Solved Problems : Circles

Solved problems on circles for class X. Get solutions of problems shown in the post and many more. Visit the link Solved Problems: Circles