Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata
In mathematics, the Laplace transform, named after its inventor Pierre-Simon Laplace is an integral transform that converts a function of a real variable (often time) to a function of a complex variable (complex frequency). The transform has many applications in science and engineering because it is a tool for solving differential equations. In particular, it transforms differential equations into algebraic equations and convolution into multiplication.
The Laplace transform of a function f(t), defined for all real numbers t ≥ 0, is the function F(s), which is a unilateral transform defined by
| | (Eq.1) |
where s is a complex number frequency parameter
- , with real numbers σ and ω.
An alternate notation for the Laplace transform is instead of F.
Get solution of the following problems.
Evaluate $\mathcal{L} \{ \sin^2 at \}$ $$$$
Evaluate $\mathcal{L} \{ e^{-2t} ( 3\cos 6t - 5 \sin 6t) \}$ $$$$
Evaluate $\mathcal{L} \{ e^{-2t} ( 3\cos 6t - 5 \sin 6t) \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{\alpha}{s-2} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{1}{(s-1)(s-2)} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{3s-2}{s62-4s+20} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{1+s^8}{s^9)} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{s}{s^2+2}+ \frac{6s}{s^2-16}+\frac{3}{s-3} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{1}{(s+2)^2(s-2)} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{1}{s^2-6s+10} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{3s+7}{s^2-2s-3} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{1}{(s+a)^3} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{s}{(s^2-a^2)^2} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{s}{(s^2+a^2)^2} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{s^2}{(s^2+2^2)^2} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{1}{s^2+6s+13} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{1}{(s^2+1)(s^2+4s+5)} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{3s^2+10s+3}{(s^2+1)(s^3+4s62+5s+2)} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{2s+7}{(s+3)^4} \}$ $$$$
Evaluate $\mathcal{L}^{-1} \{ \frac{s+3}{(s^2+4)^2} \}$ $$$$
Download the file below: