MCQ and short answer type question for IIT,WBJEE,AIEEE and other similar exams http://kolkatamaths.yolasite.com/xi-xii.php
Solved Problems for Indian Statistical Institute (B. Math and B. Stat), Chennai Mathematical Institute, JEE Main & Advance ( IIT ) and for Olympiads ( RMO and INMO ). Get Solved problems for boards ( CBSE and ISC Mathematics Papers) along with board papers.
Showing posts with label maths tution. Show all posts
Showing posts with label maths tution. Show all posts
Friday, April 8, 2011
Saturday, November 13, 2010
Something Different!
1)Let p be an odd prime and n a positive integer. In the coordinate plane, eight distinct points with integer coordinates lie on a circle with diameter of length p^n. Prove that there exists a triangle with vertices at three of the given points such that the squares of its side lengths are integers divisible by p^n+1
2)Show that 1+2+3+........+n divides 1^k+2^k+...........+n^k, for and odd positive integer k and for nay natural number n
3)Denote by a, b, c the lengths of the sides of a triangle. Prove that
a^2(b + c − a) + b^2(c + a − b) + c^2(a + b − c) ≤ 3abc.
4)Prove that the 8th power of any integer is of the form 17k or 17k+1 or 17k-1 where k is an integer #Maths #Number Theory
5) From ten distinct two-digit numbers, one can always choose two-disjoint nonempty subsets, so that their elemets have the same sum #Maths #IMO 1972
2)Show that 1+2+3+........+n divides 1^k+2^k+...........+n^k, for and odd positive integer k and for nay natural number n
3)Denote by a, b, c the lengths of the sides of a triangle. Prove that
a^2(b + c − a) + b^2(c + a − b) + c^2(a + b − c) ≤ 3abc.
4)Prove that the 8th power of any integer is of the form 17k or 17k+1 or 17k-1 where k is an integer #Maths #Number Theory
5) From ten distinct two-digit numbers, one can always choose two-disjoint nonempty subsets, so that their elemets have the same sum #Maths #IMO 1972
Subscribe to:
Posts (Atom)
google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0