Sunday, August 5, 2018

Complex Numbers in Solving Trigonometrical problems

Equation Solving, Vinod Singh ~ Kolkata Show that $ \cos \frac{\pi}{11}+\cos \frac{3\pi}{11}+\cos \frac{5\pi}{11}+\cos 7\frac{\pi}{11}+\cos \frac{9\pi}{11}= \frac{1}{2}$ $$$$ I have used complex numbers to solve the problems. Standard trigonometric methods will be very much difficult to apply and will involve lots of calculation!!! Also it is important to link the different topics and see the beauty of mathematics! Important problem for students in 10+2 level $$$$ Also the idea used to solve the problem can be used to calculate the value of $ \sum_{i=1}^{\frac{n-1}{2}} \cos \frac{(2i-1) \pi}{n}$ where $n$ is an odd positive integer. $$$$ See the video below for the explanation. $$$$

Equation Solving

Equation Solving, Vinod Singh ~ Kolkata Find all real number(s) $x$ such that $2^x+3^x+6^x-4^x-9^x=1 $ $$$$ This problem can be solved by transforming the equation where it can be written as sum of squares of number equals zero. From there the result will follow. See the video below for the explanation. $$$$

Thursday, August 2, 2018

Sophie Germain Identity

Here is a problem of primality testing of a number. As you can see a direct computation will not yield an effective result and will take a much longer time! So, the question arises how to solve the problem in the right way. Here comes the roll of simple and elegant identity known as Sophie Germain Identity. Watch the video below for the solution

Wednesday, August 1, 2018

Sunday, August 7, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Algebra

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let $a, b$ and $c$ be such that $a+b+c=0$ and \( P =\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\) is defined. What is the value of $P$? $$$$ $Solution: $ \( 2a^2+bc = a^2 + a^2 -(a+c)c\), since $b=-(a+c)$. $$$$ \( \implies 2a^2+bc = a^2 + a^2 -ac-c^2 = (a-c)(a+c)+a(a-c) = (a-c)(2a+c)=(a-c)(2a-a-b)=(a-c)(a-b)\) $$$$ Therefore \( \frac{a^2}{2a^2+bc} = \frac{a^2}{(a-c)(a-b)}\) $$$$ Similarly, \( \frac{b^2}{2b^2+ac} = \frac{b^2}{(b-a)(b-c)} \) and \( \frac{c^2}{2c^2+ab} = \frac{c^2}{(c-a)(c-b)} \) $$$$ Therefore \( P = \frac{a^2}{(a-c)(a-b)} +\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)} = \frac{1}{a-b} \big( \frac{a^2}{a-c} - \frac{b^2}{b-c} \big)+\frac{c^2}{(c-a)(c-b)}\) $$$$ \( \implies P = \frac{ab-ca-cb}{(c-a)(c-b)}+ \frac{c^2}{(c-a)(c-b)} = \frac{ab-ca-cb+c^2}{(c-a)(c-b)} = \frac{(c-a)(c-b)}{(c-a)(c-b)} = 1\)$$$$

Tuesday, July 26, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Calculus

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata If \( A = \int_{0}^{\pi} \frac{cos x}{(x+2)^2}dx\), then show that \( \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{(x+1)}dx = \frac{1}{2} \big( \frac{1}{2} +\frac{1}{\pi+2} - A\big)\). $$$$ Solution: \( A = \cos x \int_{0}^{\pi} \frac{dx}{(x+2)^2} - \int_{0}^{\pi} \bigg( \frac{d}{dx} \cos x \int \frac{dx}{(x+2)^2} \bigg) dx \) $$$$ \( \implies A = \frac{-\cos x}{x+2}\mid_{0}^{\pi} - \int_{0}^{\pi} \frac{\sin x}{(x+2)} dx \) $$$$ \( \implies A = \frac{1}{\pi +2} + \frac{1}{2} - \int_{0}^{\pi} \frac{2 \sin \frac{x}{2} \cos \frac{x}{2} }{2(1+\frac{x}{2})} dx \) $$$$ Putting $\frac{x}{2}=t$ in the last integral, we have $dx=2dt$ and $t$ varies from $0$ to $\frac{\pi}{2}$ $$$$ Therefore, \( A = \frac{1}{\pi +2} + \frac{1}{2} - 2 \int_{0}^{\frac{\pi}{2}} \frac{\sin t \cos t}{(1+t)}dt \)$$$$ \( \implies \int_{0}^{\frac{\pi}{2}} \frac{\sin t \cos t}{(1+t)}dt = \frac{1}{2} \bigg( \frac{1}{\pi +2} + \frac{1}{2} -A \bigg) \) $$$$ \( i.e., \) \( \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{(1+x)}dx = \frac{1}{2} \bigg( \frac{1}{\pi +2} + \frac{1}{2} -A \bigg) \) $$$$

Monday, July 18, 2016

Indian Statistical Institute ( ISI ) B.Math & B.Stat : Calculus

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Evaluate \( lim_{n \rightarrow \infty} \bigg(\prod_{r=1}^{r=n} (1+\frac{2r-1}{2n}) \bigg)^{\frac{1}{2n}} \) $$$$ Let \( A = \bigg(\prod_{r=1}^{r=n} (1+\frac{2r-1}{2n}) \bigg)^{\frac{1}{2n}} \) $$$$ \( \implies A = \frac{\bigg(\prod_{r=1}^{r=2n} (1+\frac{r}{2n}) \bigg)^{\frac{1}{2n}}}{\bigg(\prod_{r=1}^{r=n} (1+\frac{2r}{2n}) \bigg)^{\frac{1}{2n}}} \) $$$$ \( \implies ln A = \frac{1}{2n} \sum_{r=1}^{r=2n} ln ( 1+\frac{r}{2n})- \frac{1}{2n} \sum_{r=1}^{r=n} ln ( 1+\frac{r}{n})\) $$$$ \( \implies lim_{n \rightarrow \infty} ln A = \frac{1}{2} lim_{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{r=2n} ln ( 1+\frac{r}{2n}) - \frac{1}{2} lim_{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{r=n} ln ( 1+\frac{r}{n}) \) $$$$ \( \implies lim_{n \rightarrow \infty} ln A = \frac{1}{2} \int_{0}^{2} ln (1+ \frac{x}{2}) dx - \frac{1}{2} \int_{0}^{1} ln (1+ x ) dx \) $$$$ \( \implies lim_{n \rightarrow \infty} ln A = ln 4 - 1 - ( ln 2 - \frac{1}{2}) = ln 2 - \frac{1}{2}\)$$$$ \( \implies lim_{n \rightarrow \infty} A = e^{ln 2 - \frac{1}{2}} = \frac{2}{\sqrt{e}} \) $$$$ \( \implies lim_{n \rightarrow \infty} \bigg(\prod_{r=1}^{r=n} (1+\frac{2r-1}{2n}) \bigg)^{\frac{1}{2n}} = \frac{2}{\sqrt{e}} \) $$$$

Friday, May 6, 2016

Thursday, April 14, 2016

Friday, March 18, 2016

Binomial Series

BINOMIAL SERIES, Vinod Singh ~ Kolkata Find the sum of the series \( \sum_{r=0}^{n} (-1)^r \binom{n}{r} \big( \frac{1}{2^r}+\frac{3^r}{2^{2r}}+\frac{7^r}{2^{3r}}+ \dots \) to m terms \( \big) \) $$$$ Given series is equal to \( \sum_{r=0}^{n} (-1)^r \binom{n}{r} \sum_{k=1}^{m} \frac{(2^k -1)^r}{2^{kr}} \) $$$$ \( = \sum_{r=0}^{n} \sum_{k=1}^{m} (-1)^r \binom{n}{r} \frac{(2^k -1)^r}{2^{kr}} \) $$$$ \( = \sum_{r=0}^{n} \sum_{k=1}^{m} (-1)^r \binom{n}{r} \lambda^r \) where $\lambda = \frac{(2^k -1)}{2^{k}}$ $$$$ \( = \sum_{k=1}^{m} \sum_{r=0}^{n} (-1)^r \binom{n}{r} \lambda^r \) Interchanging the summation $$$$ \( = \sum_{k=1}^{m} (1- \lambda)^n \), Substituting the value of $\lambda$ we have, $$$$ \( = \sum_{k=1}^{m} \frac{1}{2^{nk}} = \frac{1}{2^n} \frac{\bigg(1- \big(\frac{1}{2^n}\big)^m \bigg)}{1 - \frac{1}{2^n} } \) $$$$ \( = \frac{1}{2^n} \frac{2^n(2^{nm}-1)}{2^{nm}(2^n-1)} = \frac{2^{nm}-1}{2^{nm}(2^n-1)} \)

Friday, March 11, 2016

Integration

INTEGRATION, Vinod Singh ~ Kolkata Evaluate \(\int \frac{dx}{e^x \big(1+e^{2008x}\big)^{\frac{2007}{2008}}} \) $$$$ \(\int \frac{dx}{e^x \big(1+e^{2008x}\big)^{\frac{2007}{2008}}} = \int \frac{dx}{e^x \big(e^{2008x}(1+e^{-2008x})\big)^{\frac{2007}{2008}}}\) $$$$ \(=\int \frac{dx}{e^x e^{2007x}\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} = \int \frac{e^{-2008x}dx}{\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} \) \(= \frac{-1}{2008}\int \frac{d(1+e^{-2008x})}{\big(1+e^{-2008x}\big)^{\frac{2007}{2008}}} = \frac{\frac{-1}{2008}\big(1+e^{-2008x}\big)^{-\frac{2007}{2008}+1}}{-\frac{2007}{2008}+1} + c \)
google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0