We have |x+y+x−y|≤|x+y|+|x−y|
⟹2|x|≤|x+y|+|x−y|…A
Now, |x+y+y−x|≤|x+y|+|y−x|
⟹2|y|≤|x+y|+|−1||x−y|
⟹2|y|≤|x+y|+|x−y|…B
Adding A and B we get |x|+|y|≤|x+y|+|x−y|
The second inequality holds
iff
(1+|x|)(1+|y|)|x+y|1+|x+y|≤|x|(1+|y|)+|y|(1+|x|)
iff(1+|x|)(1+|y|)|x+y|≤(|x|+|y|+2|xy|)(1+|x+y|)
(multiply and cancel out terms)
iff|x+y|≤|x|+|y|+|xy|(2+|x+y|)
Now for any real x and y, |xy|(2+|x+y|)≥0 and we know that |x+y|≤|x|+|y|
Thus the last inequality holds, which in turn proves the original ineqality.