Let z=cosπ1000+isinπ1000=cosθ+isinθ where θ=π1000 . It is easy to see that z≠1,−1.
Consider the sum 1+z2+z4+⋯+z1998, z≠1,−1. Putting w=z2 the sum reduces to 1+w+w2+⋯+w999, w≠1.
Now, 1+w+w2+⋯+w999=w1000−1w−1
Substituting back w we have the following identity 1+z2+z4+⋯+z1998=z2000−1z2−1,z≠1,−1.
Using De−Moivre′s theorem we have zn=cosnθ+isinnθ for n∈N.
Substituting back in the above identity we have,
(1+cos2θ+cos4θ+⋯+cos1998θ)+i(1+sin2θ+sin4θ+⋯+sin1998θ)=cos2000θ+isin2000θ−1cos2θ+isin2θ−1
Equating the real part from both side we have. 1+cos2θ+cos4θ+⋯+cos1998θ=Re(cos2000θ+isin2000θ−1cos2θ+isin2θ−1)=Re(cos2π+isin2π−1cos2θ+isin2θ−1), since θ=π1000.
Therefore 1+cos2θ+cos4θ+⋯+cos1998θ=Re(0)=0⟹cos2θ+cos4θ+⋯+cos1998θ=−1.
⟹cos2π1000+cos4π1000+⋯+cos1998π1000=−1
No comments:
Post a Comment