Processing math: 100%

Sunday, July 5, 2015

Indian Statistical Institute B.Math & B.Stat : Trigonometry

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Find the value of the sum cos2π1000+cos4π1000++cos1998π1000.
Let z=cosπ1000+isinπ1000=cosθ+isinθ where θ=π1000 . It is easy to see that z1,1.
Consider the sum 1+z2+z4++z1998, z1,1. Putting w=z2 the sum reduces to 1+w+w2++w999, w1.
Now, 1+w+w2++w999=w10001w1
Substituting back w we have the following identity 1+z2+z4++z1998=z20001z21,z1,1.
Using DeMoivres theorem we have zn=cosnθ+isinnθ for nN.
Substituting back in the above identity we have, (1+cos2θ+cos4θ++cos1998θ)+i(1+sin2θ+sin4θ++sin1998θ)=cos2000θ+isin2000θ1cos2θ+isin2θ1
Equating the real part from both side we have. 1+cos2θ+cos4θ++cos1998θ=Re(cos2000θ+isin2000θ1cos2θ+isin2θ1)=Re(cos2π+isin2π1cos2θ+isin2θ1), since θ=π1000.
Therefore 1+cos2θ+cos4θ++cos1998θ=Re(0)=0cos2θ+cos4θ++cos1998θ=1.
cos2π1000+cos4π1000++cos1998π1000=1

No comments:

Post a Comment