Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata
Let $z$ be a non-zero complex number such that \( |z −\frac{1}{z}| = 2.\) What is the maximum value of $|z|$? $$$$
Given \( 2 = |z −\frac{1}{z}| \geq \big||z|- |\frac{1}{z}|\big| \) $$$$
Let $t = |z|$ \( \implies \big|t- \frac{1}{t}\big| \leq 2 \) $$$$
\( \implies -2 \leq t- \frac{1}{t} \leq 2 \) $$$$
\( \implies -2t \leq t^2- 1 \leq 2t \) $$$$
\( \implies t^2 +2t- 1 \geq 0 \quad and \quad t^2 -2t- 1 \leq 0 \) $$$$
The first inequality gives \( t \in ( - \infty, -1-\sqrt{2}] \cup [\sqrt{2}-1, \infty)\). Since $t \geq 0$ \(\implies t \in [\sqrt{2}-1, \infty) \). $$$$
The second inequality gives \( t \in [1-\sqrt{2} , 1+\sqrt{2}] \). Again since $t \geq 0$ \(\implies t \in [0,1+\sqrt{2}] \) $$$$
Combining the two case we see \( t \in [\sqrt{2}-1,\sqrt{2}+1] \implies |z| \in [\sqrt{2}-1,\sqrt{2}+1] \). Thus the maximum value of $|z|$ is $\sqrt{2}+1$. $$$$
$Practice-Problem$ Let $z$ be a non-zero complex number such that \( |z +\frac{1}{z}| = a, a \in \mathbb{R^+}.\) What is the maximum and minimum value of $|z|$? $$$$
No comments:
Post a Comment