 $$$$
So, \( \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} f(x) dx = \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} |x-k| dx = \int_{k-\frac{1}{2}}^{k} (k-x) dx + \int_{k}^{k+\frac{1}{2}} (x-k) dx = \frac{1}{4}\) for $k=2,3,4\dots,n$.$$$$    
Summing for $k=2,3,4\dots,n$ we get \[\int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx = \frac{(n-1)}{4} \dots (C)\] $$$$
Adding equations $A,C$ and $B$ we get \[ \int_{0}^{n+1} f(x) dx = \int_{0}^{1+\frac{1}{2}} f(x) dx+ \int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx+\int_{n+\frac{1}{2}}^{n+1} f(x) dx = \frac{1}{2}+ \frac{1}{2} \times \frac{1}{4}+ \frac{(n-1)}{4}+ \frac{1}{2}- \frac{1}{2} \times \frac{1}{4} \] $$$$
\[= \frac{(n-1)}{4}+1 = \frac{n+3}{4} \]
 $$$$
So, \( \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} f(x) dx = \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} |x-k| dx = \int_{k-\frac{1}{2}}^{k} (k-x) dx + \int_{k}^{k+\frac{1}{2}} (x-k) dx = \frac{1}{4}\) for $k=2,3,4\dots,n$.$$$$    
Summing for $k=2,3,4\dots,n$ we get \[\int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx = \frac{(n-1)}{4} \dots (C)\] $$$$
Adding equations $A,C$ and $B$ we get \[ \int_{0}^{n+1} f(x) dx = \int_{0}^{1+\frac{1}{2}} f(x) dx+ \int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx+\int_{n+\frac{1}{2}}^{n+1} f(x) dx = \frac{1}{2}+ \frac{1}{2} \times \frac{1}{4}+ \frac{(n-1)}{4}+ \frac{1}{2}- \frac{1}{2} \times \frac{1}{4} \] $$$$
\[= \frac{(n-1)}{4}+1 = \frac{n+3}{4} \]
Solved Problems for Indian Statistical Institute (B. Math and B. Stat), Chennai Mathematical Institute, JEE Main & Advance ( IIT ) and for Olympiads ( RMO and INMO ). Get Solved problems for boards ( CBSE and ISC Mathematics Papers) along with board papers.
Wednesday, June 3, 2015
Indian Statistical Institute B.Math & B.Stat : Integration
 $$$$
So, \( \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} f(x) dx = \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} |x-k| dx = \int_{k-\frac{1}{2}}^{k} (k-x) dx + \int_{k}^{k+\frac{1}{2}} (x-k) dx = \frac{1}{4}\) for $k=2,3,4\dots,n$.$$$$    
Summing for $k=2,3,4\dots,n$ we get \[\int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx = \frac{(n-1)}{4} \dots (C)\] $$$$
Adding equations $A,C$ and $B$ we get \[ \int_{0}^{n+1} f(x) dx = \int_{0}^{1+\frac{1}{2}} f(x) dx+ \int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx+\int_{n+\frac{1}{2}}^{n+1} f(x) dx = \frac{1}{2}+ \frac{1}{2} \times \frac{1}{4}+ \frac{(n-1)}{4}+ \frac{1}{2}- \frac{1}{2} \times \frac{1}{4} \] $$$$
\[= \frac{(n-1)}{4}+1 = \frac{n+3}{4} \]
 $$$$
So, \( \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} f(x) dx = \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} |x-k| dx = \int_{k-\frac{1}{2}}^{k} (k-x) dx + \int_{k}^{k+\frac{1}{2}} (x-k) dx = \frac{1}{4}\) for $k=2,3,4\dots,n$.$$$$    
Summing for $k=2,3,4\dots,n$ we get \[\int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx = \frac{(n-1)}{4} \dots (C)\] $$$$
Adding equations $A,C$ and $B$ we get \[ \int_{0}^{n+1} f(x) dx = \int_{0}^{1+\frac{1}{2}} f(x) dx+ \int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx+\int_{n+\frac{1}{2}}^{n+1} f(x) dx = \frac{1}{2}+ \frac{1}{2} \times \frac{1}{4}+ \frac{(n-1)}{4}+ \frac{1}{2}- \frac{1}{2} \times \frac{1}{4} \] $$$$
\[= \frac{(n-1)}{4}+1 = \frac{n+3}{4} \]
Labels:
ISI
Tuesday, June 2, 2015
Indian Statistical Institute B.Math & B.Stat : Square of a real is non-negative
Labels:
ISI
Indian Statistical Institute B.Math & B.Stat : Limits at Infinity
Labels:
ISI
Saturday, May 30, 2015
Inequality
Matrices & Determinants
Indian Statistical Institute B.Math & B.Stat : Number Theory
Labels:
ISI
Indian Statistical Institute B.Math & B.Stat : Combinatorics
Labels:
ISI
Indian Statistical Institute B.Math & B.Stat : Number Theory
Labels:
ISI
Friday, May 29, 2015
Indian Statistical Institute B.Math & B.Stat : Number Theory
Labels:
ISI
Indian Statistical Institute B.Math & B.Stat : Integration
Labels:
ISI
Indian Statistical Institute B.Math & B.Stat : Number Theory
Labels:
ISI
Indian Statistical Institute B.Math & B.Stat : Inequality
Labels:
ISI
Thursday, May 28, 2015
Indian Statistical Institute B.Math & B.Stat : Combinatorics
Labels:
ISI
Subscribe to:
Comments (Atom)
 
