Saturday, May 30, 2015

Inequality

Mathematics Olympiad ~ Vinod Singh, Kolkata $Problem$ #3 $$ $$ Find all real numbers $x$ for which \(\sqrt{3-x}-\sqrt{x+1} > \frac{1}{2}\) $$ $$ Let $f(x)$ \(=\sqrt{3-x}-\sqrt{x+1}\). First note that $f(x)$ is defined for \( -1 \leq x \leq 3 \) $$ $$ \( f'(x) = \frac{-1}{2\sqrt{3-x}} - \frac{1}{2\sqrt{x+1}} = - \big(\frac{1}{2\sqrt{3-x}} + \frac{1}{2\sqrt{x+1}}\big) < 0 \Rightarrow f(x)\) is strictly decreasing $$ $$ Now \( f(-1) = 2 > \frac{1}{2}\) and \( f(3) = -2 < \frac{1}{2}\) Since $f(x)$ is continuous, $\exists$ at least one x $\in$ ${(-1,3)}$ suct that $f(x) = \frac{1}{2}$ $$ $$ \( f(x) = \frac{1}{2} \Rightarrow \sqrt{3-x}-\sqrt{x+1} = \frac{1}{2} \Rightarrow 64x^2-128x+33 = 0 \Rightarrow x = 1 \pm \frac{\sqrt{31}}{8} \)$$ $$ but \(x = 1 + \frac{\sqrt{31}}{8}\) does not satisfy \(\sqrt{3-x}-\sqrt{x+1} = \frac{1}{2}\) Check yourself! So the only solution is \(x = 1 - \frac{\sqrt{31}}{8}\) $$ $$ Since $f(x)$ is strictly decreasing, the given inequality is true for \( x \in {[-1,1 - \frac{\sqrt{31}}{8}\big)}\) $$ $$

No comments:

Post a Comment

google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0