Processing math: 100%

Wednesday, June 3, 2015

Indian Statistical Institute B.Math & B.Stat : Integration

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let n be a positive integer Define f(x)=min{|x1|,|x2|,,|xn|}
Then evaluate n+10f(x)dx
When 0<x<1+12, |x1|=min{|x1|,|x2|,,|xn|}. Now |x1|=1x for 0<x<1 and |x1|=x1 for 1<x<1+12
So, 1+120f(x)dx=10(1x)dx+1+121(x1)dx=12+12×14(A)
When n+12<x<n+1, |xn|=min{|x1|,|x2|,,|xn|}. Now |xn|=xn for n+12<x<n+1
So, n+1n+12f(x)dx=n+1n+12(xn)dx=1212×14(B)
Consider the diagram given below where 1<kn,. When x(k12,k+12), |xk| is minimum among |xi| where i=1,2,3,,k1,k+1,,n
So, k+12k12f(x)dx=k+12k12|xk|dx=kk12(kx)dx+k+12k(xk)dx=14 for k=2,3,4,n.
Summing for k=2,3,4,n we get n+121+12f(x)dx=(n1)4(C)
Adding equations A,C and B we get n+10f(x)dx=1+120f(x)dx+n+121+12f(x)dx+n+1n+12f(x)dx=12+12×14+(n1)4+1212×14
=(n1)4+1=n+34

No comments:

Post a Comment