Then evaluate ∫n+10f(x)dx
When 0<x<1+12, |x−1|=min{|x−1|,|x−2|,…,|x−n|}. Now |x−1|=1−x for 0<x<1 and |x−1|=x−1 for 1<x<1+12
So, ∫1+120f(x)dx=∫10(1−x)dx+∫1+121(x−1)dx=12+12×14…(A)
When n+12<x<n+1, |x−n|=min{|x−1|,|x−2|,…,|x−n|}. Now |x−n|=x−n for n+12<x<n+1
So, ∫n+1n+12f(x)dx=∫n+1n+12(x−n)dx=12−12×14…(B)
Consider the diagram given below where 1<k≤n,. When x∈(k−12,k+12), |x−k| is minimum among |x−i| where i=1,2,3,…,k−1,k+1,…,n

So, ∫k+12k−12f(x)dx=∫k+12k−12|x−k|dx=∫kk−12(k−x)dx+∫k+12k(x−k)dx=14 for k=2,3,4…,n.
Summing for k=2,3,4…,n we get ∫n+121+12f(x)dx=(n−1)4…(C)
Adding equations A,C and B we get ∫n+10f(x)dx=∫1+120f(x)dx+∫n+121+12f(x)dx+∫n+1n+12f(x)dx=12+12×14+(n−1)4+12−12×14
=(n−1)4+1=n+34
No comments:
Post a Comment