Processing math: 100%

Friday, May 29, 2015

Indian Statistical Institute B.Math & B.Stat : Number Theory

Indian Statistical Institute B.Math & B.Stat Let S be the set of all integers k, 1kn, such that g.c.d(k,n)=1. What is the arithmetic mean of the integers in S?.
First note that |S|=ϕ(n). Now let kS then there exists intergers u,v such that ku+nv=1(A).
The integer nk{1,2,,n1} because k can never be equals n, for g.c.d(n,n)=n and kS. We will now show that g.c.d(nk,n)=1. Adding nu to both sides of (A) we get nu+ku+nv=nu+1u(nk)+(v+u)n=1g.c.d(nk,n)=1
So, for k{1,2,,n1} if kSnkS Thus S can be written in the form, S={k1,k2,k,.....,kr,nkr,......,nk2,nk1} where |S|=ϕ(n)
Clearly the sum of the elements of S is (k1+nk1)+(k2+nk2)++(kr+nkr)=nϕ(n)2 ( Pairing reduces the terms to half the original (ϕ(n))).
arithmetic mean =nϕ(n)2ϕ(n)=n2

No comments:

Post a Comment