First note that |S|=ϕ(n). Now let k∈S then there exists intergers u,v such that ku+nv=1…(A).
The integer n−k∈{1,2,…,n−1} because k can never be equals n, for g.c.d(n,n)=n and k∈S. We will now show that g.c.d(n−k,n)=1.
Adding −nu to both sides of (A) we get −nu+ku+nv=−nu+1⟹−u(n−k)+(v+u)n=1⟹g.c.d(n−k,n)=1
So, for k∈{1,2,…,n−1} if k∈S⟹n−k∈S
Thus S can be written in the form, S={k1,k2,k,.....,kr,n−kr,......,n−k2,n−k1} where |S|=ϕ(n)
Clearly the sum of the elements of S is (k1+n−k1)+(k2+n−k2)+⋯+(kr+n−kr)=nϕ(n)2 ( Pairing reduces the terms to half the original (ϕ(n))).
arithmetic mean =nϕ(n)2ϕ(n)=n2
No comments:
Post a Comment