Since a1>a2>⋯>ar and each of them is positive we have an1>an2>⋯>anr
⟹an1+an2+⋯+anr<an1+an1+⋯+an1=ran1
Letting n→∞ we have, limn→∞(an1+an2+⋯+anr)1n<limn→∞(ran1)1n
=a1limn→∞r1n=a1 Note r>0
Now, (an1+an2+⋯+anr)1n=(an1(1+an2an1+⋯+ara1))1n=a1(1+an2an1+⋯+ara1))1n>a1 Since (1+an2an1+⋯+ara1)1n>1
Letting n→∞ we have, limn→∞(an1+an2+⋯+anr)1n>limn→∞a1=a1
Thus by Sandwhich−theorem limn→∞(an1+an2+⋯+anr)1n=a1
No comments:
Post a Comment