Processing math: 100%

Tuesday, June 2, 2015

Indian Statistical Institute B.Math & B.Stat : Limits at Infinity

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let a1>a2>>ar be positive real numbers. Compute limn(an1+an2++anr)1n.
Since a1>a2>>ar and each of them is positive we have an1>an2>>anr
an1+an2++anr<an1+an1++an1=ran1
Letting n we have, limn(an1+an2++anr)1n<limn(ran1)1n =a1limnr1n=a1 Note r>0
Now, (an1+an2++anr)1n=(an1(1+an2an1++ara1))1n=a1(1+an2an1++ara1))1n>a1 Since (1+an2an1++ara1)1n>1
Letting n we have, limn(an1+an2++anr)1n>limna1=a1
Thus by Sandwhichtheorem limn(an1+an2++anr)1n=a1

No comments:

Post a Comment