Monday, June 8, 2015

Indian Statistical Institute B.Math & B.Stat : Continuity and Bijections

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata $Problem-1.$ Let \(f: \mathbb{R} \to \mathbb{R} \) be given by \(f(x) = x(x-1)(x+1) \). Then show that $f$ is onto but not 1-1. $$$$ The injectivity part is very much obvious. See that \( f(0)=f(1)=f(-1) = 0 \). Now for the surjectivity, observe that $f$ is an odd degree polynomial. Hence it must be surjective! (Think if not, then $\exists$ a real number which has no pre-image (say $r$ ). Now consider the polynomial \( g(x) = f(x)-r \)!! what else g(x) is also an odd degree polynomial with no real roots!!! ) $$$$ $Problem-2.$ Another Problem with a kick of continuity. Let \(f: \mathbb{R} \to \mathbb{R} \) be given by \(f(x) = x^3-3x^2+6x-5 \). Then show that $f$ is both onto and 1-1. $$$$ Again note that $f$ is an odd degree polynomial so it is surjective. Since $f$ is a polynomial it is continuous on $\mathbb{R}$. Also \(f'(x)=3x^2-6x+6 = 3(x^2-2x+2) = 3\{(x-1)^2 + 1 \} > 0 \) \( \forall x \in \mathbb{R}\). This shows that $f$ is strictly increasing. Thus $f$ is continuous and strictly increasing hence must be 1-1. $$$$ $Problem-3.$ Let \(f: \mathbb{R} \to \mathbb{R} \) be given by \(f(x) = x^2 - \frac{x^2}{1+x^2} \). Then show that $f$ is neither onto nor 1-1. $$$$ Clearly $f$ is not injective since \(f(x)=f(-x) \). Also \( f(x) = \frac{x^4}{1+x^2} \) which shows that $f$ assume non-negative values. Thus the \(Range_f \subset \mathbb{R} = Co-domain_f\). Thus $f$ is neither surjective. $$$$ $Problem-4.$ Let \( \phi :[0,1] \to [0,1] \) be a continuous and 1-1 function. Let \( \phi(0) = 0, \phi(1) = 1, \phi \big(\frac{1}{2}\big) = c, \phi \big(\frac{1}{4}\big) = d.\) Then show that $ c > d $. $$$$ This follows form the property of continuous functions. On an interval I ( not necessarily compact ), if a function is continuous and 1-1 it is strictly increasing. To prove this you can use the Intermediate Value Theorem.

Saturday, June 6, 2015

Problems : Limits

Problems for Indian Statistical Institute, Chennai Mathematical Institute, JEE Main and Advanced. $$$$ \[1.Evaluate: \lim_{x \to \infty} \frac{20+2\sqrt{x}+3\sqrt[3]{x}}{2+\sqrt{4x-3}+\sqrt[3]{8x-4}}\] \[2.Evaluate: \lim_{x \to \infty} \big( x \sqrt{x^2+a^2}-\sqrt{x^4+a^4}\big)\] \[3.Evaluate: \lim_{x \to \infty} x^3 \big\{ \sqrt{x^2+\sqrt{x^4+1}}-\sqrt{2}x \big \}\] \[4.Evaluate: \lim_{x \to \infty} \sqrt{\frac{x-\cos^2 x}{x+\sin x}}\] \[5.Evaluate: \lim_{x \to \infty} [2\log(3x)-\log(x^2+1) ]\] 6. Let \( R_n =2+\sqrt{2+\sqrt{2+\dots+\sqrt{2}}}\) (n square roots signs). Then evaluate \(\lim_{n \to \infty} R_n \) $$$$ 7. If \(a_n = \bigg( 1+\frac{1}{n^2}\bigg)\bigg( 1+\frac{2^2}{n^2}\bigg)^2 \bigg( 1+\frac{3^2}{n^2}\bigg)^3 \dots \bigg( 1+\frac{n^2}{n^2}\bigg)^n \), then evaluate \[ \lim_{n \to \infty} a_n^{-\frac{1}{n^2}} \] $$$$ \[8.Evaluate \lim_{x \to \infty} \sqrt{x^2+x}-\sqrt{x^2+1}\] \[9. \lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}\] \[10. \lim_{x \to 0} \frac{\cos x -1}{\sin^2 x}\] For PDF click here

Friday, June 5, 2015

Indian Statistical Institute B.Math & B.Stat : Roots of Polynomial

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let $c$ be a fixed real number. Show that a root of the equation \[x(x+1)(x+2)\dots(x+2009)=c\] can have multiplicity at most $2.$ $$$$ Let \( f(x) = x(x+1)(x+2)\dots(x+2009)-c \) $$$$ First we compute the derivative of $f(x)$ and see that \( f'(x) = (x+1)(x+2)\dots(x+2009)+x(x+2)\dots(x+2009)+\dots+x(x+1)\dots(x+r-1)(x+r+1)\dots(x+2009)+\) \(\dots+x(x+1)(x+2)\dots(x+2008) \) where $r$ is a positive integer less than $2009$. $$$$ Now \(f'(-r) = (-r)(-r+1)\dots(-1)(1)\dots(-r+2009) =(-1)^r r! (2009-r)! > 0\) $if$ $r$ is even, else $<0$.where \( r \in \{0,1,2,\dots,2008\}\) $$$$ Thus we have the following inequalities, \( f'(0) > 0, f'(-1) < 0, f'(-2) > 0, \dots, f'(2008) > 0, f'(2009) < 0 \) $$$$ This shows that $f'(x)=0$ has one real root in each of the intervals \( (-1,0),(-2,-1),\dots,(-2009,-2008) \). Since $degree$ of $f'(x)$ is $2009$, all the roots of $f'(x)=0$ is real and simple. Thus a root of $f'(x)=0$ cannot be a root of the equation $f''(x)=0$. So a root of $f(x)=0$ can have $multiplicity$ at most $2$. $$$$

Wednesday, June 3, 2015

Indian Statistical Institute B.Math & B.Stat : Integration

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let $n$ be a positive integer Define \[f(x) = min \{|x-1|,|x-2|,\dots,|x-n|\} \] $$$$ Then evaluate \[ \int_{0}^{n+1} f(x) dx \] $$$$ When \(0 < x < 1+ \frac{1}{2} \), $|x-1|=min \{|x-1|,|x-2|,\dots,|x-n|\}$. Now $|x-1|= 1-x$ for \( 0 < x < 1\) and $|x-1|= x-1 $ for $1 < x < 1+ \frac{1}{2}$ $$$$ So, \(\int_{0}^{1+\frac{1}{2}} f(x) dx = \int_{0}^{1} (1-x) dx + \int_{1}^{1+ \frac{1}{2}} (x-1) dx = \frac{1}{2}+ \frac{1}{2} \times \frac{1}{4} \dots (A)\) $$$$ When \(n+ \frac{1}{2} < x < n+1 \), $|x-n|=min \{|x-1|,|x-2|,\dots,|x-n|\}$. Now $|x-n|= x-n$ for \( n+ \frac{1}{2} < x < n+1 \)$$$$ So, \(\int_{n+\frac{1}{2}}^{n+1} f(x) dx = \int_{n+\frac{1}{2}}^{n+1} (x-n) dx = \frac{1}{2}- \frac{1}{2} \times \frac{1}{4} \dots (B)\) $$$$ Consider the diagram given below where $1 < k \leq n$,. When \( x \in \big(k-\frac{1}{2},k+\frac{1}{2} \big) \), $|x-k|$ is minimum among $|x-i|$ where $i=1,2,3,\dots,k-1,k+1,\dots,n$ $$$$ $$$$ So, \( \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} f(x) dx = \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} |x-k| dx = \int_{k-\frac{1}{2}}^{k} (k-x) dx + \int_{k}^{k+\frac{1}{2}} (x-k) dx = \frac{1}{4}\) for $k=2,3,4\dots,n$.$$$$ Summing for $k=2,3,4\dots,n$ we get \[\int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx = \frac{(n-1)}{4} \dots (C)\] $$$$ Adding equations $A,C$ and $B$ we get \[ \int_{0}^{n+1} f(x) dx = \int_{0}^{1+\frac{1}{2}} f(x) dx+ \int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx+\int_{n+\frac{1}{2}}^{n+1} f(x) dx = \frac{1}{2}+ \frac{1}{2} \times \frac{1}{4}+ \frac{(n-1)}{4}+ \frac{1}{2}- \frac{1}{2} \times \frac{1}{4} \] $$$$ \[= \frac{(n-1)}{4}+1 = \frac{n+3}{4} \]

Tuesday, June 2, 2015

Indian Statistical Institute B.Math & B.Stat : Square of a real is non-negative

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Show that the following system of inequalities has exactly one solution $a-b^2 \geq \frac{1}{4},$ $b-c^2 \geq \frac{1}{4},$ $c-d^2 \geq \frac{1}{4}$ and $d-a^2 \geq \frac{1}{4}.$ $$$$ Adding up all the inequalities we get \( a-b^2 + b-c^2 + c-d^2 + d-a^2 \geq \frac{1}{4} + \frac{1}{4} + \frac{1}{4} +\frac{1}{4} \) $$$$ \( \implies a-a^2 - \frac{1}{4} + b-b^2- \frac{1}{4} + c-c^2 - \frac{1}{4} + d-d^2 - \frac{1}{4} \geq 0 \) $$$$ \( \implies -\big(a- \frac{1}{2} \big)^2 -\big(b- \frac{1}{2} \big)^2 - \big(c- \frac{1}{2} \big)^2 - \big(d- \frac{1}{2} \big)^2 \geq 0 \) $$$$ which is possible only when R.H.S is zero i.e., \( a=b=c=d= \frac{1}{2} \), since the R.H.S is always non-positive.

Indian Statistical Institute B.Math & B.Stat : Limits at Infinity

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let \( a_1 > a_2 > \dots > a_r \) be positive real numbers. Compute \(\lim_{n \to \infty} \big( a_1^n+a_2^n+\dots+a_r^n \big)^{\frac{1}{n}}\). $$$$ Since \( a_1 > a_2 > \dots > a_r \) and each of them is positive we have \(a_1^n>a_2^n>\dots>a_r^n \) $$$$ \( \implies a_1^n+a_2^n+\dots+a_r^n < a_1^n+a_1^n+\dots+a_1^n = ra_1^n \) $$$$ Letting \( n \to \infty \) we have, \(\lim_{n \to \infty} \big( a_1^n+a_2^n+\dots+a_r^n \big)^{\frac{1}{n}} < \lim_{n \to \infty}(ra_1^n)^{\frac{1}{n}} \) \( = a_1\lim_{n \to \infty}r^{\frac{1}{n}}= a_1 \) Note $r>0$ $$$$ Now, \( \big( a_1^n+a_2^n+\dots+a_r^n \big)^{\frac{1}{n}} = \bigg( a_1^n \big(1+\frac{a_2^n}{a_1^n}+\dots+\frac{a_r}{a_1}\big) \bigg)^{\frac{1}{n}} = a_1\bigg( 1+\frac{a_2^n}{a_1^n}+\dots+\frac{a_r}{a_1}\big) \bigg)^{\frac{1}{n}} > a_1 \) Since \(\bigg( 1+\frac{a_2^n}{a_1^n}+\dots+\frac{a_r}{a_1} \bigg)^{\frac{1}{n}} > 1\) $$$$ Letting \( n \to \infty \) we have, \(\lim_{n \to \infty} \big( a_1^n+a_2^n+\dots+a_r^n \big)^{\frac{1}{n}} > \lim_{n \to \infty}a_1 =a_1 \) $$$$ Thus by $Sandwhich-theorem$ \(\lim_{n \to \infty} \big( a_1^n+a_2^n+\dots+a_r^n \big)^{\frac{1}{n}} = a_1\)

Saturday, May 30, 2015

Inequality

Mathematics Olympiad ~ Vinod Singh, Kolkata $Problem$ #3 $$ $$ Find all real numbers $x$ for which \(\sqrt{3-x}-\sqrt{x+1} > \frac{1}{2}\) $$ $$ Let $f(x)$ \(=\sqrt{3-x}-\sqrt{x+1}\). First note that $f(x)$ is defined for \( -1 \leq x \leq 3 \) $$ $$ \( f'(x) = \frac{-1}{2\sqrt{3-x}} - \frac{1}{2\sqrt{x+1}} = - \big(\frac{1}{2\sqrt{3-x}} + \frac{1}{2\sqrt{x+1}}\big) < 0 \Rightarrow f(x)\) is strictly decreasing $$ $$ Now \( f(-1) = 2 > \frac{1}{2}\) and \( f(3) = -2 < \frac{1}{2}\) Since $f(x)$ is continuous, $\exists$ at least one x $\in$ ${(-1,3)}$ suct that $f(x) = \frac{1}{2}$ $$ $$ \( f(x) = \frac{1}{2} \Rightarrow \sqrt{3-x}-\sqrt{x+1} = \frac{1}{2} \Rightarrow 64x^2-128x+33 = 0 \Rightarrow x = 1 \pm \frac{\sqrt{31}}{8} \)$$ $$ but \(x = 1 + \frac{\sqrt{31}}{8}\) does not satisfy \(\sqrt{3-x}-\sqrt{x+1} = \frac{1}{2}\) Check yourself! So the only solution is \(x = 1 - \frac{\sqrt{31}}{8}\) $$ $$ Since $f(x)$ is strictly decreasing, the given inequality is true for \( x \in {[-1,1 - \frac{\sqrt{31}}{8}\big)}\) $$ $$

Matrices & Determinants

Mathematics Olympiad ~ Vinod Sing, Kolkata $Problem$ #1 $$ $$ If $A$ and $B$ are different matrices satisfying \( A^3 = B^3 \) and \(A^2B = B^2A\), find \(det(A^2+B^2)\) $$ $$ Since $A$ and $B$ are different matrices \( A-B \neq O \), Now \((A^2+B^2)(A-B) = A^3-A^2B+B^2A-B^3\) $$ $$ =$O$ since \(A^3 = B^3\) and \(A^2B = B^2A\) $$ $$ This shows that \((A^2+B^2)\) has a zero divisor, so it is not invertible hence \(det(A^2+B^2) = 0\)

Indian Statistical Institute B.Math & B.Stat : Number Theory

Indian Statistical Institute : Number Theory Let $k$ be any odd integer greater that 1. Then show that \( 1^k+2^k+3^k+\dots \dots+2006^k \) is divisible by 2013021. $$$$ We will prove the general case. Let \(S= 1^k+2^k+3^k+\dots \dots+n^k\) where $n \geq 2$ and \(n\in \mathbb{N}\). $$$$ \(2S = 1^k+2^k+3^k+\dots \dots+n^k + 1^k+2^k+3^k+\dots \dots+n^k = (1^k+n^k)+(2^k+(n-1)^k)+\dots \dots+(n^k+1^k)\) $$$$ Using the result, $n^k+m^k$ is always divisible by $n+m$ if $k$ is odd we see that $2S$ is divisible by $(n+1)$ $$$$ Again \(2S = 1^k+2^k+3^k+\dots \dots+n^k + 1^k+2^k+3^k+\dots \dots+n^k\) $$$$ \( = (1^k+(n-1)^k)+(2^k+(n-2)^k)+\dots \dots+((n-1)^k+1^k)+2n^k\) $$$$ Using the same result and noting that $2n^k$ is divisible by $n$ we see that $2S$ is divisible by $n$. Now both $n$ an $n+1$ divides $2S$ and $g.c.d(n.n+1)=1$ we see that $n(n+1)$ divides $2S$ this implies $\frac{n(n+1)}{2}$ divides $S$. ( $n(n+1)$ is always even) $$$$ In the given problem $n=2006$, thus \( 1^k+2^k+3^k+\dots \dots+2006^k \) is divisible by $\frac{2006(2006+1)}{2}=2013021$

Indian Statistical Institute B.Math & B.Stat : Combinatorics

Indian Statistical Institute : Combinatorics In how many ways one can choose three distinct numbers from the set \( \{1,2,3,\dots \dots,19,20\}\) such that their product is divisible by 4? $$$$ We partition the set \( \{1,2,3,\dots \dots,19,20\}\) into three disjoint sets \(S_1=\{4,8,12,16,20\},S_2=\{2,6,10,14,18\},S_3=\{1,3,5,7,9,11,13,15,17,19\}\) $$$$ Three selected (distinct) numbers will not be divisible by $4$ $iff$ all the $three$ numbers are selected form $S_3$ or $two$ of them are selected from $S_3$ and $one$ of them from $S_1$. Numbers of such numbers are \( \binom{10}{3}+\binom{5}{2} \times \binom{5}{1} = 345 \) $$$$ So numbers of selection such that their product is divisible by $4$ is \(\binom{20}{3}-345= 795 \)

Indian Statistical Institute B.Math & B.Stat : Number Theory

Indian Statistical Institute : Number Theory Find the digit at the unit place of \[\big(1!-2!+3!-\dots \dots +25!\big )^{\big(1!-2!+3!-\dots \dots +25!\big )}\] First note that \( k! \equiv 0 (mod\ 10) \) for all $k \geq 5 , k \in \mathbb{N}$ $$$$ So, \( 5!-6!+7!-\dots \dots +25! \equiv 0 (mod\ 10) \) and \( 1!-2!+3!-4! = -19 \equiv 1 (mod\ 10)\) (Using the property of $congruences$). $$$$ Using the above two congruences \( \big(1!-2!+3!-\dots \dots +25!\big ) \equiv 1 (mod\ 10) \) $$$$ So, \[\big(1!-2!+3!-\dots \dots +25!\big )^{\big(1!-2!+3!-\dots \dots +25!\big )} \equiv 1^{\big(1!-2!+3!-\dots \dots +25!\big )} \equiv 1 (mod 10) \] giving $1$ as the last digit. $$$$ Let \(a \equiv a' (mod\ m) \) and \(b \equiv b' (mod\ m)\), then important properties of $congruences$ include the following, where $\implies$ means "implies": $$$$ 1. Reflexivity: $a\equiv a (mod- m)$. $$$$ 2. Symmetry: \(a\equiv b (mod\ m) \implies b\equiv a (mod\ m)\).$$$$ 3. Transitivity: \(a\equiv b (mod\ m)\) and \(b \equiv c (mod\ m)\implies a\equiv c (mod\ m)\). $$$$ 4. \(a+b \equiv a'+b' (mod\ m)\)$$$$ 5. \(a-b\equiv a'-b' (mod\ m)\). $$$$ 6. \(ab\equiv a'b' (mod\ m)\). $$$$ 7. \(a\equiv b (mod\ m)\implies ka \equiv kb (mod\ m)\). $$$$ 8. \(a\equiv b (mod\ m)\implies a^n\equiv b^n (mod\ m)\). $$$$ 9. \(ak\equiv bk (mod\ m)\implies\) \(a\equiv b \big(mod\ \frac{m}{(k,m)}\big),\) where $(k,m)$ is the greatest common divisor. $$$$ 11. If $a \equiv b (mod\ m)$, then $P(a) \equiv P(b) (mod\ m)$, for $P(x)$ a polynomial with integer coefficients.

Friday, May 29, 2015

Indian Statistical Institute B.Math & B.Stat : Number Theory

Indian Statistical Institute B.Math & B.Stat Find the sum of all even positive divisors of $1000$. $$$$ \( 1000 = 2^3 \times 5^3 \). Now any even divisor of $1000$ must contain a factor of the form $2^j$ where $j \in \{1,2,3\}$. We note that $2$ and $5$ are the only prime factors of $1000$ , so a even factor must be of the form $2^j\times 5^i$ where $j \in \{1,2,3\}$ and $i \in \{0,1,2,3\}$. $$$$ So the required sum is \( \sum_{j=0}^{3} \sum_{i=1}^{3} 2^i \times 5^j =\sum_{j=0}^{3} 14 \times 5^j = 14 \times \frac{5^4-1}{5-1} = 2184\)

Indian Statistical Institute B.Math & B.Stat : Integration

Indian Statistical Institute B.Math & B.Stat Let $\alpha$ and $\beta$ be two positive real numbers. For any integer $n>0$, define \( a_n = \int_{\beta}^{n} \frac{\alpha}{u(u^\alpha+2+u^{-\alpha})}du\). Then find \( \lim_{n \to \infty} a_n \). $$$$ Multiplying $u^{\alpha-1}$ to the numerator and denominator of the integrand, we have \( a_n = \int_{\beta}^{n} \frac{\alpha u^{\alpha-1}}{u\times u^{\alpha-1}(u^\alpha+2+u^{-\alpha})}du\) $$$$ Substituting $u^{\alpha}=t$ we get the transformed integral as \(a_n = \int_{\beta^\alpha}^{n^\alpha}\frac{dt}{(t+1)^2}dt = \frac{n^\alpha-\beta^\alpha}{(1+\beta^\alpha)(1+n^\alpha)}\) $$$$ Therefore,\( \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^\alpha-\beta^\alpha}{(1+\beta^\alpha)(1+n^\alpha)}= \lim_{n \to \infty} \frac{1-\big({\frac{\beta}{n}}\big)^\alpha}{(1+\beta^\alpha)(1+\frac{1}{n})}=\frac{1}{1+\beta^\alpha}\)
google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0