1.Evaluate:limx→∞20+2√x+33√x2+√4x−3+3√8x−4
2.Evaluate:limx→∞(x√x2+a2−√x4+a4)
3.Evaluate:limx→∞x3{√x2+√x4+1−√2x}
4.Evaluate:limx→∞√x−cos2xx+sinx
5.Evaluate:limx→∞[2log(3x)−log(x2+1)]
6. Let Rn=2+√2+√2+⋯+√2 (n square roots signs). Then evaluate limn→∞Rn
7. If an=(1+1n2)(1+22n2)2(1+32n2)3…(1+n2n2)n, then evaluate limn→∞a−1n2n
8.Evaluatelimx→∞√x2+x−√x2+1
9.limx→π2(sinx)tanx
10.limx→0cosx−1sin2x
For PDF click here
No comments:
Post a Comment