Saturday, May 23, 2015

Combinatorics :Indian Statistical Institute B.Math & B.Stat

Indian Statistical Institute B.Math & B.Stat How many $three-digits$ numbers of distinct digits can be formed by using the digits $1,2,3,4,5,9$ such that the sum of digits is at least 12? $$$$ First note that since the digits must be distinct there must be no repetition and further note that the maximum sum of such three digits is $9+5+4=18.$ $$$$ We will find all such possible by considering their sum of the digits. $$$$ Case I: Sum of the digits is 12. In this case the selection of digits can be \(\{1,2,9\},\{3,4,5\}\) $$$$ So, a total of $3!+3!=12$ $three-digits$ numbers possible. $$$$ Case II: Sum of the digits is 13. In this case the selection of digits can be \(\{1,3,9\}\) $$$$ So, a total of $3!=6$ $three-digits$ numbers possible. $$$$ Case III: Sum of the digits is 14. In this case the selection of digits can be \(\{1,4,9\},\{2,3,9\}\) $$$$ So, a total of $3!+3!=12$ $three-digits$ numbers possible. $$$$ case IV: Sum of the digits is 15. In this case the selection of digits can be \(\{1,5,9\},\{2,4,9\}\) $$$$ So, a total of $3!+3!=12$ $three-digits$ numbers possible. $$$$ Case V: Sum of the digits is 16. In this case the selection of digits can be \(\{2,5,9\},\{2,5,9\}\) $$$$ So, a total of $3!+3!=12$ $three-digits$ numbers possible. $$$$ Case VI: Sum of the digits is 17. In this case the selection of digits can be \(\{3,5,9\}\) $$$$ So, a total of $3!=6$ $three-digits$ numbers possible. $$$$ Case VII: Sum of the digits is 18. In this case the selection of digits can be \(\{4,5,9\}\) $$$$ So, a total of $3!=6$ $three-digits$ numbers possible. $$$$ Adding all the cases we have $12+6+12+12+12+6+6=66$, $three-digits$ numbers of distinct digits can be formed.

No comments:

Post a Comment

google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0