Wednesday, May 27, 2015

Indian Statistical Institute B.Math & B.Stat : Integration

Indian Statistical Institute B.Math & B.Stat Evaluate: 201412014tan1xxdx
Let I=201412014tan1xxdx, Put x=1t I=120142014tan11ttdt=201412014tan11ttdt=201412014tan11xxdx
Therefore,
2I=201412014tan1xxdx+201412014tan11xxdx
=201412014tan1x+tan11xxdx
=201412014π2xdx
=π2201412014dxx
=π2[logx]210412014
=π2[log2014log12014]
=π2log20142
=πlog2014

No comments:

Post a Comment