Let I=∫201412014tan−1xxdx, Put x=1t ⟹I=−∫120142014tan−11ttdt=∫201412014tan−11ttdt=∫201412014tan−11xxdx
Therefore,
2I=∫201412014tan−1xxdx+∫201412014tan−11xxdx
=∫201412014tan−1x+tan−11xxdx
=∫201412014π2xdx
=π2∫201412014dxx
=π2[logx]210412014
=π2[log2014−log12014]
=π2log20142
=πlog2014
No comments:
Post a Comment