Friday, June 12, 2015

Indian Statistical Institute B.Math & B.Stat : Number Theory

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let \( d_1,d_2,d_3, \dots ,d_k\) be all the factors of a positive integer $n$ including $1$ and $n$. Suppose \( d_1+d_2+d_3+ \dots +d_k = 72\). Then find the value of \[ \frac{1}{d_1}+ \frac{1}{d_2}+\dots +\frac{1}{d_k}\] Since $n$ is positive and $d_i$ is a factor of $n$ for each \( i \in \{1,2,3,\dots,k\} \quad \exists \quad \lambda_i > 0 \quad \lambda_i \in \mathbb{N}\) such that $n=d_i \lambda_i$. This also shows that $\lambda_i$ is a factor of $n$. We now show that $\lambda_i \neq \lambda_j$ for $i \neq j$. If possible let $\lambda_i = \lambda_j$ for some $i,j$ where $i \neq j$. \( \implies d_i \lambda_i = d_j \lambda_i \implies d_i = d_j \), a contradiction since $d_i$ and $d_j$ are distinct factors of $n$.Thus \( \lambda_1,\lambda_2,\lambda_3, \dots ,\lambda_k\) are also the possible factors of $n$ \( \implies \{ d_1,d_2,d_3, \dots ,d_k\}=\{\lambda_1,\lambda_2,\lambda_3, \dots ,\lambda_k \} \) in some order. $$$$ \( d_1+d_2+d_3+ \dots +d_k = 72 \implies \frac{1}{\lambda_1}+ \frac{1}{\lambda_2}+\dots +\frac{1}{\lambda_k} = \frac{72}{n} \implies \frac{1}{d_1}+ \frac{1}{d_2}+\dots +\frac{1}{d_k} = \frac{72}{n}\)

Thursday, June 11, 2015

Indian Statistical Institute B.Math & B.Stat : Combinatorics

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Among all the factors $4^6 6^7 21^8$ the number of factors which are perfect squares is? $$$$ \(4^6 6^7 21^8 = 2^{12} \times 2^7 \times 3^7 \times 3^8 \times 7^8 = 2^{19} \times 3^{15} \times 7^8\). Now a factor of $4^6 6^7 21^8$ must be of the form $2^i3^k7^k$ where $i,j,k$ are integers and \( 0 \leq i \leq 19, 0 \leq j \leq 15 \quad and \quad 0 \leq k \leq 8\), since the problem asks for divisors which are perfect squares $i,j,k$ must be even. Now conider the product \((2^0+ 2^2+ \dots + 2^{18})(3^0+ 3^2+ \dots + 3^{14})(7^0+ 7^2+ \dots + 7^8) \). Each term of the product satisfies the above two condtion, so the required number of factors which are perfect squares is equal to the number of terms of the above product, which in turn equals to \(10 \times 8 \times 5 = 400 \)

Indian Statistical Institute B.Math & B.Stat : Combinatorics

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata What is the number of ordered triplets $(a,b,c)$ where $a,b,c$ are positive integers ( not necessarily distinct ) such that $abc=1000.$ $$$$ Since $1000=2^3 5^3$ any ordered triplet $(a,b,c)$ must be of the form \((2^i5^p,2^j5^q,2^k5^r)\) where $i+j+k=3$, $p+q+r=3$ and $i,j,k,p,q,r$ are non-negative integers. Number of solutions to the equation $i+j+k=3$ and $p+q+r=3$ is given by \( \binom{3+3-1}{3-1} =10 \). Now for each set of values of $i,j,k$ there are $10$ possible combinations of $p,q,r$. Thus giving a total of \(10 \times 10 =100\) ordered triplets. $$$$ Note the number of solutions to the equation \(x_1+x_2+\dots+x_r=n, n \in \mathbb{N}\) in positive integers is \( \binom {n-1}{r-1} \) and in non-negative integers is \( \binom {n+r-1}{r-1} \).

Wednesday, June 10, 2015

Indian Statistical Institute B.Math & B.Stat : Combinatorics

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let \( S = \{(a_1,a_2,a_3)\} | \quad 0 \leq a_i \leq 9 \quad and \quad a_1+a_2+a_3 \quad is \quad divisible \quad by \quad 3 \} \). Find the number of elements in $S$. $$$$ We divide the integers \( 0 \leq a_i \leq 9 \) into three groups having the property that each element of the same group leaves the same remainder on being divided by $3$. The groups are \( \{0,3,6,9\}, \{1,4,7\} \quad and \quad \{2,5,8\} \). Now a $three-tuple$ \((a_1,a_2,a_3)\) will be divisible by $3$ iff and only if each of the co-ordinate belongs to the same group or each of them belongs to the different groups, giving a total of \( 4^3+3^3+3^3+ 4 \times 3 \times 3 \times 3! = 334\) possible $three-tuples$ which are divisible by $3$.

Indian Statistical Institute B.Math & B.Stat : Integration

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Evaluate \[ \int_{0}^{2 \pi} |1+2 \sin x| dx\] when \( x \in [0,\pi] \quad \sin x \geq 0 \quad \implies |1+2 \sin x| = 1+2 \sin x \) $$$$ Now note that when \( -1 \leq \sin x < - \frac{1}{2} \quad \implies -2 \leq 2 \sin x < -1 \quad \implies -1 \leq 1+ 2 \sin x < 0 \quad \implies |1+2 \sin x| = -(1+2 \sin x) \) $$$$ In the $third-quadrant$ sine function continuously decreases (strictly) from $0$ to $-1$ and \( \sin \frac{7 \pi}{6} = - \frac{1}{2} \) and at $x=\frac{3 \pi}{2}$ it takes the value $-1$. After that int the $fourth-quadrant$ sine function continuously increases (strictly) from $-1$ to $0$ and at $x=\frac{11 \pi}{6}$ it takes the value $- \frac{1}{2}$. So we conclude that in the $third$ and the $fourth-quadrant,$ \( -1 \leq \sin x < - \frac{1}{2} \quad when \quad x \in [\frac{7 \pi}{6},\frac{11 \pi}{6}] \). $$$$ So,\[ \int_{0}^{2 \pi} |1+2 \sin x| dx\ = \int_{0}^{\frac{7 \pi}{6}} (1+2 \sin x) dx+ \int_{\frac{11 \pi}{6}}^{2 \pi} (1+2 \sin x) dx- \int_{\frac{7 \pi}{6}}^{\frac{11 \pi}{6}} (1+2 \sin x) dx\] \[= [x-2 \cos x]_{0}^{\frac{7 \pi}{6}}+ [x-2 \cos x]_{\frac{11 \pi}{6}}^{2 \pi}- [x-2 \cos x]_{\frac{7 \pi}{6}}^{\frac{11 \pi}{6}} \] \[=\frac{7 \pi}{6}+ \sqrt{3}+2 + 2\pi -2 - \frac{11 \pi}{6} + \sqrt{3}- \frac{11 \pi}{6} + \sqrt{3} + \frac{7 \pi}{6} + \sqrt{3} \] \[= \frac{2\pi}{3} + 4 \sqrt{3}\]

Tuesday, June 9, 2015

Indian Statistical Institute B.Math & B.Stat : Integration

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let $n$ be positive integers and $[.]$ be the floor function. Evaluate the integral \[ \int_{0}^{n^{\frac{1}{k}}} [ x^k + n] dx\] Since \( 0<1<2<3< \dots < n-1 < n \) we have \( 0^{\frac{1}{k}}<1^{\frac{1}{k}}<2^{\frac{1}{k}}<3^{\frac{1}{k}}< \dots < (n-1)^{\frac{1}{k}} < n^{\frac{1}{k}} \) $$$$ Therefore \[ \int_{0}^{n^{\frac{1}{k}}} [ x^k + n] dx = \sum_{i=0}^{n-1} \int_{i^{\frac{1}{k}}}^{(i+1){\frac{1}{k}}} [x^k + n] dx \] Now for a fixed $i$ in the range, consider the integral \[\int_{i^{\frac{1}{k}}}^{(i+1)^{\frac{1}{k}}} [x^k + n] dx \] \[ i^{\frac{1}{k}} < x < (i+1)^{\frac{1}{k}} \implies i < x^k < i+1 \implies x^k = i + \epsilon \quad where \quad 0 < \epsilon < 1\] \[ therefore \quad [x^k +n] = [i + \epsilon+n]= [i+n+ \epsilon] = i+n \] \[ therefore \quad \int_{i^{\frac{1}{k}}}^{(i+1)^{\frac{1}{k}}} [x^k + n] dx = \int_{i^{\frac{1}{k}}}^{(i+1)^{\frac{1}{k}}} (i+n) dx = (i+n)\bigg((i+1)^{\frac{1}{k}}-i^{\frac{1}{k}}\bigg) \] \[ Thus \quad \int_{0}^{n^{\frac{1}{k}}} [ x^k + n] dx = \sum_{i=0}^{n-1} \int_{i^{\frac{1}{k}}}^{(i+1){\frac{1}{k}}} [x^k + n] dx = \sum_{i=0}^{n-1} (i+n)\bigg((i+1)^{\frac{1}{k}}-i^{\frac{1}{k}}\bigg) \] \[ = (n+0)\bigg(1^{\frac{1}{k}}-0^{\frac{1}{k}}\bigg) + (n+1)\bigg(2^{\frac{1}{k}}-1^{\frac{1}{k}}\bigg)+ \dots +(n+n-2)\bigg((n-1)^{\frac{1}{k}}-(n-2)^{\frac{1}{k}}\bigg) + (n+n-1)\bigg(n^{\frac{1}{k}}-(n-1)^{\frac{1}{k}}\bigg) \] \( = n \bigg( 1^{\frac{1}{k}}-0^{\frac{1}{k}} +2^{\frac{1}{k}}-1^{\frac{1}{k}}+\dots+(n-1)^{\frac{1}{k}}-(n-2)^{\frac{1}{k}}+n^{\frac{1}{k}}-(n-1)^{\frac{1}{k}} \bigg) \) \(+ 1\bigg(2^{\frac{1}{k}}-1^{\frac{1}{k}}\bigg)+2\bigg(3^{\frac{1}{k}}-2^{\frac{1}{k}}\bigg)\dots+(n-2)\bigg((n-1)^{\frac{1}{k}}-(n-2)^{\frac{1}{k}}\bigg)+(n-1)\bigg(n^{\frac{1}{k}}-(n-1)^{\frac{1}{k}}\bigg) \) $$$$ \( = n \times n^{\frac{1}{k}}+2^{\frac{1}{k}}-1^{\frac{1}{k}}+2 \times 3^{\frac{1}{k}}-2 \times 2^{\frac{1}{k}}+ \dots +(n-2)(n-1)^{\frac{1}{k}}-(n-2)(n-2)^{\frac{1}{k}}+ (n-1)n^{\frac{1}{k}}-(n-1)(n-1)^{\frac{1}{k}} \) $$$$ \( =n^{\frac{1+k}{k}}-1^{\frac{1}{k}}-2^{\frac{1}{k}}-\dots-(n-1)^{\frac{1}{k}}+(n-1)n^{\frac{1}{k}}\) $$$$ \( =n^{\frac{1+k}{k}}-1^{\frac{1}{k}}-2^{\frac{1}{k}}-\dots-(n-1)^{\frac{1}{k}}-n^{\frac{1}{k}}+n \times n^{\frac{1}{k}}\) $$$$ \( =n^{\frac{1+k}{k}}-1^{\frac{1}{k}}-2^{\frac{1}{k}}-\dots-(n-1)^{\frac{1}{k}}-n^{\frac{1}{k}}+n^{\frac{1+k}{k}}\) $$$$ \( =2n^{\frac{1+k}{k}}-1^{\frac{1}{k}}-2^{\frac{1}{k}}-\dots-(n-1)^{\frac{1}{k}}-n^{\frac{1}{k}}\) $$$$ \( = 2n^{\frac{1+k}{k}} - \sum_{i=1}^{n} i^\frac{1}{k} \)

Indian Statistical Institute B.Math & B.Stat : Inequality

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Prove that \[ \frac{1}{2}. \frac{3}{4}.\frac{5}{6}. \frac{7}{8} \dots \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}} \] Let \(a,b > 0 \quad and \quad a < b \), we first show that \( \frac{a}{b} < \frac{a+1}{b+1}\). Now \( \frac{a+1}{b+1} - \frac{a}{b} = \frac{b-a}{b(b+1)} > 0 \quad since \quad b-a,a,b >0\). $$$$ Using the above result we see that \[\frac{1}{2} < \frac{2}{3} \] \[\frac{3}{4} < \frac{4}{5} \] \[\dots\] \[ \frac{2n-1}{2n} < \frac{2n}{2n+1} \] Let \( x_n = \frac{1}{2}. \frac{3}{4}.\frac{5}{6}. \frac{7}{8} \dots \frac{2n-1}{2n} \quad and \quad y_n = \frac{2}{3}. \frac{4}{5}.\frac{6}{7}. \frac{8}{9} \dots \frac{2n}{2n+1} \). Using the above result it is easy to see that \( x_n < y_n \). $$$$ Now \[ x_n^2 = x_n . x_n < x_n .y_n = \frac{1}{2}. \frac{3}{4}.\frac{5}{6}. \frac{7}{8} \dots \frac{2n-1}{2n} . \frac{2}{3}. \frac{4}{5}.\frac{6}{7}. \frac{8}{9} \dots \frac{2n}{2n+1} = \frac{1}{2n+1} \] \[ \implies x_n < \frac{1}{\sqrt{2n+1}} \quad i.e., \quad \frac{1}{2}. \frac{3}{4}.\frac{5}{6}. \frac{7}{8} \dots \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}\]

Indian Statistical Institute B.Math & B.Stat : Differentiation

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let \( f: \mathbb{R} \to \mathbb{R} \) be a function that is differentiable $n+1$ times for some positive integer $n$. The $ith$ derivative of $f$ is denoted by $f^{(i)}$. Suppose \[ f(1)=f(0)=f^{(1)}(0)=\dots=f^{(n)}(0)=0.\] Prove that $f^{(n+1)}=0$ for some $x \in (0,1)$. $$$$ Since $f$ is $n+1$ times differentiable(everywhere in $\mathbb{R}$).\( f,f^{(1)},\dots,f^{(n)} \) are all differentiable and continuous in \( (0,1) \quad and \quad [0,1] \) respectively.$\dots (A)$ $$$$ Since \(f(0)=f(1)=0 \) By Rolles' Theorem $\exists \quad c_1$ in $(0,1)$ suct that $f^{(1)}(c_1)=0$ $$$$ Now consider the interval $[0,c_1]$. Note that \( f^{(1)}(0)=f^{(1)}(c_1)=0 \) and $f^{(1)}$ is continuous and differentiable in $[0,c_1]$ and $(0,c_1)$ respectively. (Using $\dots (A)$). Thus by Rolle's Theorem $\exists \quad c_2$ in $(0,c_1)$ suct that $f^{(2)}(c_2)=0$ $$$$ Now consider the interval $[0,c_2]$. Note that \( f^{(2)}(0)=f^{(2)}(c_2)=0 \) and $f^{(2)}$ is continuous and differentiable in $[0,c_2]$ and $(0,c_2)$ respectively. (Using $\dots (A)$). Thus by Rolle's Theorem $\exists \quad c_3$ in $(0,c_2)$ suct that $f^{(3)}(c_3)=0$ $$$$ Continuing like this, we get a point $c_{n}$ such that $f^{(n)}(c_{n})=0$ where $c_{n} \in (0,c_{n-1})$. $$$$ Now consider the interval $[0,c_n]$. Note that \( f^{(n)}(0)=f^{(n)}(c_n)=0 \) and $f^{(n)}$ is continuous and differentiable in $[0,c_n]$ and $(0,c_n)$ respectively. (Using $\dots (A)$). Thus by Rolle's Theorem $\exists \quad c_{n+1}$ in $(0,c_n)$ suct that $f^{(n+1)}(c_{n+1})=0$. Since \( 0 < c_{n+1} < c_{n} < \dots < c_1 < 1 \) thus $c_{n+1} \in (0,1)$ $$$$

Monday, June 8, 2015

Indian Statistical Institute B.Math & B.Stat: Integration and Continuity

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata If \( c \int_{0}^{1} xf(2x) dx = \int_{0}^{2} tf(t) dt,\) where $f$ is a positive continuous functions, then find then value of $c$. $$$$ In the R.H.S put $2x=t$, this gives \( c \int_{0}^{1} xf(2x) dx = 4\int_{0}^{1} xf(2x) dx = (c-4) \int_{0}^{1} xf(2x) dx =0 \implies c =4\) $$$$ Since $f$ is given to be a positive continuous function, $xf(x)$ is continuous and $>0 \in (0,1)$. Therefore \( \int_{0}^{1} xf(2x) dx > 0 \). This follows from the fact that if a continuous functions is positive at a point in its domain, the $\exists$ a open neighborhood containing the point and contained in the domain throughout which the function is positive.

Indian Statistical Institute B.Math & B.Stat : Continuity and Bijections

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata $Problem-1.$ Let \(f: \mathbb{R} \to \mathbb{R} \) be given by \(f(x) = x(x-1)(x+1) \). Then show that $f$ is onto but not 1-1. $$$$ The injectivity part is very much obvious. See that \( f(0)=f(1)=f(-1) = 0 \). Now for the surjectivity, observe that $f$ is an odd degree polynomial. Hence it must be surjective! (Think if not, then $\exists$ a real number which has no pre-image (say $r$ ). Now consider the polynomial \( g(x) = f(x)-r \)!! what else g(x) is also an odd degree polynomial with no real roots!!! ) $$$$ $Problem-2.$ Another Problem with a kick of continuity. Let \(f: \mathbb{R} \to \mathbb{R} \) be given by \(f(x) = x^3-3x^2+6x-5 \). Then show that $f$ is both onto and 1-1. $$$$ Again note that $f$ is an odd degree polynomial so it is surjective. Since $f$ is a polynomial it is continuous on $\mathbb{R}$. Also \(f'(x)=3x^2-6x+6 = 3(x^2-2x+2) = 3\{(x-1)^2 + 1 \} > 0 \) \( \forall x \in \mathbb{R}\). This shows that $f$ is strictly increasing. Thus $f$ is continuous and strictly increasing hence must be 1-1. $$$$ $Problem-3.$ Let \(f: \mathbb{R} \to \mathbb{R} \) be given by \(f(x) = x^2 - \frac{x^2}{1+x^2} \). Then show that $f$ is neither onto nor 1-1. $$$$ Clearly $f$ is not injective since \(f(x)=f(-x) \). Also \( f(x) = \frac{x^4}{1+x^2} \) which shows that $f$ assume non-negative values. Thus the \(Range_f \subset \mathbb{R} = Co-domain_f\). Thus $f$ is neither surjective. $$$$ $Problem-4.$ Let \( \phi :[0,1] \to [0,1] \) be a continuous and 1-1 function. Let \( \phi(0) = 0, \phi(1) = 1, \phi \big(\frac{1}{2}\big) = c, \phi \big(\frac{1}{4}\big) = d.\) Then show that $ c > d $. $$$$ This follows form the property of continuous functions. On an interval I ( not necessarily compact ), if a function is continuous and 1-1 it is strictly increasing. To prove this you can use the Intermediate Value Theorem.

Saturday, June 6, 2015

Problems : Limits

Problems for Indian Statistical Institute, Chennai Mathematical Institute, JEE Main and Advanced. $$$$ \[1.Evaluate: \lim_{x \to \infty} \frac{20+2\sqrt{x}+3\sqrt[3]{x}}{2+\sqrt{4x-3}+\sqrt[3]{8x-4}}\] \[2.Evaluate: \lim_{x \to \infty} \big( x \sqrt{x^2+a^2}-\sqrt{x^4+a^4}\big)\] \[3.Evaluate: \lim_{x \to \infty} x^3 \big\{ \sqrt{x^2+\sqrt{x^4+1}}-\sqrt{2}x \big \}\] \[4.Evaluate: \lim_{x \to \infty} \sqrt{\frac{x-\cos^2 x}{x+\sin x}}\] \[5.Evaluate: \lim_{x \to \infty} [2\log(3x)-\log(x^2+1) ]\] 6. Let \( R_n =2+\sqrt{2+\sqrt{2+\dots+\sqrt{2}}}\) (n square roots signs). Then evaluate \(\lim_{n \to \infty} R_n \) $$$$ 7. If \(a_n = \bigg( 1+\frac{1}{n^2}\bigg)\bigg( 1+\frac{2^2}{n^2}\bigg)^2 \bigg( 1+\frac{3^2}{n^2}\bigg)^3 \dots \bigg( 1+\frac{n^2}{n^2}\bigg)^n \), then evaluate \[ \lim_{n \to \infty} a_n^{-\frac{1}{n^2}} \] $$$$ \[8.Evaluate \lim_{x \to \infty} \sqrt{x^2+x}-\sqrt{x^2+1}\] \[9. \lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}\] \[10. \lim_{x \to 0} \frac{\cos x -1}{\sin^2 x}\] For PDF click here

Friday, June 5, 2015

Indian Statistical Institute B.Math & B.Stat : Roots of Polynomial

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let $c$ be a fixed real number. Show that a root of the equation \[x(x+1)(x+2)\dots(x+2009)=c\] can have multiplicity at most $2.$ $$$$ Let \( f(x) = x(x+1)(x+2)\dots(x+2009)-c \) $$$$ First we compute the derivative of $f(x)$ and see that \( f'(x) = (x+1)(x+2)\dots(x+2009)+x(x+2)\dots(x+2009)+\dots+x(x+1)\dots(x+r-1)(x+r+1)\dots(x+2009)+\) \(\dots+x(x+1)(x+2)\dots(x+2008) \) where $r$ is a positive integer less than $2009$. $$$$ Now \(f'(-r) = (-r)(-r+1)\dots(-1)(1)\dots(-r+2009) =(-1)^r r! (2009-r)! > 0\) $if$ $r$ is even, else $<0$.where \( r \in \{0,1,2,\dots,2008\}\) $$$$ Thus we have the following inequalities, \( f'(0) > 0, f'(-1) < 0, f'(-2) > 0, \dots, f'(2008) > 0, f'(2009) < 0 \) $$$$ This shows that $f'(x)=0$ has one real root in each of the intervals \( (-1,0),(-2,-1),\dots,(-2009,-2008) \). Since $degree$ of $f'(x)$ is $2009$, all the roots of $f'(x)=0$ is real and simple. Thus a root of $f'(x)=0$ cannot be a root of the equation $f''(x)=0$. So a root of $f(x)=0$ can have $multiplicity$ at most $2$. $$$$

Wednesday, June 3, 2015

Indian Statistical Institute B.Math & B.Stat : Integration

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let $n$ be a positive integer Define \[f(x) = min \{|x-1|,|x-2|,\dots,|x-n|\} \] $$$$ Then evaluate \[ \int_{0}^{n+1} f(x) dx \] $$$$ When \(0 < x < 1+ \frac{1}{2} \), $|x-1|=min \{|x-1|,|x-2|,\dots,|x-n|\}$. Now $|x-1|= 1-x$ for \( 0 < x < 1\) and $|x-1|= x-1 $ for $1 < x < 1+ \frac{1}{2}$ $$$$ So, \(\int_{0}^{1+\frac{1}{2}} f(x) dx = \int_{0}^{1} (1-x) dx + \int_{1}^{1+ \frac{1}{2}} (x-1) dx = \frac{1}{2}+ \frac{1}{2} \times \frac{1}{4} \dots (A)\) $$$$ When \(n+ \frac{1}{2} < x < n+1 \), $|x-n|=min \{|x-1|,|x-2|,\dots,|x-n|\}$. Now $|x-n|= x-n$ for \( n+ \frac{1}{2} < x < n+1 \)$$$$ So, \(\int_{n+\frac{1}{2}}^{n+1} f(x) dx = \int_{n+\frac{1}{2}}^{n+1} (x-n) dx = \frac{1}{2}- \frac{1}{2} \times \frac{1}{4} \dots (B)\) $$$$ Consider the diagram given below where $1 < k \leq n$,. When \( x \in \big(k-\frac{1}{2},k+\frac{1}{2} \big) \), $|x-k|$ is minimum among $|x-i|$ where $i=1,2,3,\dots,k-1,k+1,\dots,n$ $$$$ $$$$ So, \( \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} f(x) dx = \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} |x-k| dx = \int_{k-\frac{1}{2}}^{k} (k-x) dx + \int_{k}^{k+\frac{1}{2}} (x-k) dx = \frac{1}{4}\) for $k=2,3,4\dots,n$.$$$$ Summing for $k=2,3,4\dots,n$ we get \[\int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx = \frac{(n-1)}{4} \dots (C)\] $$$$ Adding equations $A,C$ and $B$ we get \[ \int_{0}^{n+1} f(x) dx = \int_{0}^{1+\frac{1}{2}} f(x) dx+ \int_{1+\frac{1}{2}}^{n+\frac{1}{2}} f(x) dx+\int_{n+\frac{1}{2}}^{n+1} f(x) dx = \frac{1}{2}+ \frac{1}{2} \times \frac{1}{4}+ \frac{(n-1)}{4}+ \frac{1}{2}- \frac{1}{2} \times \frac{1}{4} \] $$$$ \[= \frac{(n-1)}{4}+1 = \frac{n+3}{4} \]
google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0