Monday, June 8, 2015

Indian Statistical Institute B.Math & B.Stat: Integration and Continuity

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata If \( c \int_{0}^{1} xf(2x) dx = \int_{0}^{2} tf(t) dt,\) where $f$ is a positive continuous functions, then find then value of $c$. $$$$ In the R.H.S put $2x=t$, this gives \( c \int_{0}^{1} xf(2x) dx = 4\int_{0}^{1} xf(2x) dx = (c-4) \int_{0}^{1} xf(2x) dx =0 \implies c =4\) $$$$ Since $f$ is given to be a positive continuous function, $xf(x)$ is continuous and $>0 \in (0,1)$. Therefore \( \int_{0}^{1} xf(2x) dx > 0 \). This follows from the fact that if a continuous functions is positive at a point in its domain, the $\exists$ a open neighborhood containing the point and contained in the domain throughout which the function is positive.

No comments:

Post a Comment

google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0