Processing math: 100%

Tuesday, June 9, 2015

Indian Statistical Institute B.Math & B.Stat : Integration

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let n be positive integers and [.] be the floor function. Evaluate the integral n1k0[xk+n]dx
Since 0<1<2<3<<n1<n we have 01k<11k<21k<31k<<(n1)1k<n1k
Therefore n1k0[xk+n]dx=n1i=0(i+1)1ki1k[xk+n]dx
Now for a fixed i in the range, consider the integral (i+1)1ki1k[xk+n]dx
i1k<x<(i+1)1ki<xk<i+1xk=i+ϵwhere0<ϵ<1
therefore[xk+n]=[i+ϵ+n]=[i+n+ϵ]=i+n
therefore(i+1)1ki1k[xk+n]dx=(i+1)1ki1k(i+n)dx=(i+n)((i+1)1ki1k)
Thusn1k0[xk+n]dx=n1i=0(i+1)1ki1k[xk+n]dx=n1i=0(i+n)((i+1)1ki1k)
=(n+0)(11k01k)+(n+1)(21k11k)++(n+n2)((n1)1k(n2)1k)+(n+n1)(n1k(n1)1k)
=n(11k01k+21k11k++(n1)1k(n2)1k+n1k(n1)1k) +1(21k11k)+2(31k21k)+(n2)((n1)1k(n2)1k)+(n1)(n1k(n1)1k)
=n×n1k+21k11k+2×31k2×21k++(n2)(n1)1k(n2)(n2)1k+(n1)n1k(n1)(n1)1k
=n1+kk11k21k(n1)1k+(n1)n1k
=n1+kk11k21k(n1)1kn1k+n×n1k
=n1+kk11k21k(n1)1kn1k+n1+kk
=2n1+kk11k21k(n1)1kn1k
=2n1+kkni=1i1k

No comments:

Post a Comment