Let a,b>0anda<b, we first show that ab<a+1b+1. Now a+1b+1−ab=b−ab(b+1)>0sinceb−a,a,b>0.
Using the above result we see that 12<23
34<45
…
2n−12n<2n2n+1
Let xn=12.34.56.78…2n−12nandyn=23.45.67.89…2n2n+1. Using the above result it is easy to see that xn<yn.
Now x2n=xn.xn<xn.yn=12.34.56.78…2n−12n.23.45.67.89…2n2n+1=12n+1
⟹xn<1√2n+1i.e.,12.34.56.78…2n−12n<1√2n+1
No comments:
Post a Comment