Wednesday, June 10, 2015

Indian Statistical Institute B.Math & B.Stat : Combinatorics

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Let \( S = \{(a_1,a_2,a_3)\} | \quad 0 \leq a_i \leq 9 \quad and \quad a_1+a_2+a_3 \quad is \quad divisible \quad by \quad 3 \} \). Find the number of elements in $S$. $$$$ We divide the integers \( 0 \leq a_i \leq 9 \) into three groups having the property that each element of the same group leaves the same remainder on being divided by $3$. The groups are \( \{0,3,6,9\}, \{1,4,7\} \quad and \quad \{2,5,8\} \). Now a $three-tuple$ \((a_1,a_2,a_3)\) will be divisible by $3$ iff and only if each of the co-ordinate belongs to the same group or each of them belongs to the different groups, giving a total of \( 4^3+3^3+3^3+ 4 \times 3 \times 3 \times 3! = 334\) possible $three-tuples$ which are divisible by $3$.

No comments:

Post a Comment

google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0