when x∈[0,π]sinx≥0⟹|1+2sinx|=1+2sinx
Now note that when −1≤sinx<−12⟹−2≤2sinx<−1⟹−1≤1+2sinx<0⟹|1+2sinx|=−(1+2sinx)
In the third−quadrant sine function continuously decreases (strictly) from 0 to −1 and sin7π6=−12 and at x=3π2 it takes the value −1. After that int the fourth−quadrant sine function continuously increases (strictly) from −1 to 0 and at x=11π6 it takes the value −12. So we conclude that in the third and the fourth−quadrant, −1≤sinx<−12whenx∈[7π6,11π6].
So,∫2π0|1+2sinx|dx =∫7π60(1+2sinx)dx+∫2π11π6(1+2sinx)dx−∫11π67π6(1+2sinx)dx
=[x−2cosx]7π60+[x−2cosx]2π11π6−[x−2cosx]11π67π6
=7π6+√3+2+2π−2−11π6+√3−11π6+√3+7π6+√3
=2π3+4√3
No comments:
Post a Comment