Processing math: 100%

Wednesday, June 10, 2015

Indian Statistical Institute B.Math & B.Stat : Integration

Indian Statistical Institute B.Math & B.Stat Solved Problems, Vinod Singh ~ Kolkata Evaluate 2π0|1+2sinx|dx
when x[0,π]sinx0|1+2sinx|=1+2sinx
Now note that when 1sinx<1222sinx<111+2sinx<0|1+2sinx|=(1+2sinx)
In the thirdquadrant sine function continuously decreases (strictly) from 0 to 1 and sin7π6=12 and at x=3π2 it takes the value 1. After that int the fourthquadrant sine function continuously increases (strictly) from 1 to 0 and at x=11π6 it takes the value 12. So we conclude that in the third and the fourthquadrant, 1sinx<12whenx[7π6,11π6].
So,2π0|1+2sinx|dx =7π60(1+2sinx)dx+2π11π6(1+2sinx)dx11π67π6(1+2sinx)dx
=[x2cosx]7π60+[x2cosx]2π11π6[x2cosx]11π67π6
=7π6+3+2+2π211π6+311π6+3+7π6+3
=2π3+43

No comments:

Post a Comment